32 research outputs found

    Detection of vitellogenin incorporation into zebrafish oocytes by FITC fluorescence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large volumes of lymph can be collected from the eye-sacs of bubble-eye goldfish. We attempted to induce vitellogenin (Vtg) in the eye-sac lymph of bubble-eye goldfish and develop a method for visualizing Vtg incorporation by zebrafish oocytes using FITC-labeling.</p> <p>Methods</p> <p>Estrogen efficiently induced Vtg in the eye-sac lymph of goldfish. After FITC-labeled Vtg was prepared, it was injected into mature female zebrafish.</p> <p>Results</p> <p>Incorporation of FITC-labeled Vtg by zebrafish oocytes was detected in <it>in vivo </it>and <it>in vitro </it>experiments. The embryos obtained from zebrafish females injected with FITC-labeled Vtg emitted FITC fluorescence from the yolk sac and developed normally.</p> <p>Conclusion</p> <p>This method for achieving Vtg incorporation by zebrafish oocytes could be useful in experiments related to the development and endocrinology of zebrafish oocytes.</p

    Mother-to-embryo vitellogenin transport in a viviparous teleost Xenotoca eiseni

    Get PDF
    魚類がお腹の子供に与える栄養素を解明 --哺乳類が失った遺伝子を利用して胎生機構を獲得--. 京都大学プレスリリース. 2019-10-09.Vitellogenin (Vtg), a yolk nutrient protein that is synthesized in the livers of female animals, and subsequently carried into the ovary, contributes to vitellogenesis in oviparous animals. Thus, Vtg levels are elevated during oogenesis. In contrast, Vtg proteins have been genetically lost in viviparous mammals, thus the yolk protein is not involved in their oogenesis and embryonic development. In this study, we identified Vtg protein in the livers of females during the gestation of the viviparous teleost, Xenotoca eiseni. Although vitellogenesis is arrested during gestation, biochemical assays revealed that Vtg protein was present in ovarian tissues and lumen fluid. The Vtg protein was also detected in the trophotaeniae of the intraovarian embryo. Immunoelectron microscopy revealed that Vtg protein is absorbed into intracellular vesicles in the epithelial cells of the trophotaeniae. Furthermore, extraneous Vtg protein injected into the abdominal cavity of a pregnant female was subsequently detected in the trophotaeniae of the intraovarian embryo. Our data suggest that the yolk protein is one of the matrotrophic factors supplied from the mother to the intraovarian embryo during gestation in X. eiseni

    Expression profiling of zebrafish sox9 mutants reveals that Sox9 is required for retinal differentiation

    Get PDF
    AbstractThe transcription factor gene Sox9 plays various roles in development, including differentiation of the skeleton, gonads, glia, and heart. Other functions of Sox9 remain enigmatic. Because Sox9 protein regulates expression of target genes, the identification of Sox9 targets should facilitate an understanding of the mechanisms of Sox9 action. To help identify Sox9 targets, we used microarray expression profiling to compare wild-type embryos to mutant embryos lacking activity for both sox9a and sox9b, the zebrafish co-orthologs of Sox9. Candidate genes were further evaluated by whole-mount in situ hybridization in wild-type and sox9 single and double mutant embryos. Results identified genes expressed in cartilage (col2a1a and col11a2), retina (calb2a, calb2b, crx, neurod, rs1, sox4a and vsx1) and pectoral fin bud (klf2b and EST AI722369) as candidate targets for Sox9. Cartilage is a well-characterized Sox9 target, which validates this strategy, whereas retina represents a novel Sox9 function. Analysis of mutant phenotypes confirmed that Sox9 helps regulate the number of Müller glia and photoreceptor cells and helps organize the neural retina. These roles in eye development were previously unrecognized and reinforce the multiple functions that Sox9 plays in vertebrate development

    精神看護実習をおこなう看護学生の眺める「風景」の視覚化 : データマイニングとその活用

    Get PDF
    論文Original Paper精神科病棟で看護学生が認知している「風景」を俯瞰すべく、情動知能を指標として,データマイニングの手法を手がかりにその描画を試み、妥当性について考察した。学生115名を対象にEQSで測定された集団のデータをもとに描画された「風景」は、各因子の定義をもって説明可能なそれぞれの特徴を伴った「風景」であることが確認された。教育的介入に際して、描画された「風景」を媒体として用いることの可能性と限界について言及した

    Mutant analyses reveal different functions of fgfr1 in medaka and zebrafish despite conserved ligand–receptor relationships

    Get PDF
    AbstractMedaka (Oryzias latipes) is a small freshwater teleost that provides an excellent developmental genetic model complementary to zebrafish. Our recent mutagenesis screening using medaka identified headfish (hdf) which is characterized by the absence of trunk and tail structures with nearly normal head including the midbrain–hindbrain boundary (MHB). Positional-candidate cloning revealed that the hdf mutation causes a functionally null form of Fgfr1. The fgfr1hdf is thus the first fgf receptor mutant in fish. Although FGF signaling has been implicated in mesoderm induction, mesoderm is induced normally in the fgfr1hdf mutant, but subsequently, mutant embryos fail to maintain the mesoderm, leading to defects in mesoderm derivatives, especially in trunk and tail. Furthermore, we found that morpholino knockdown of medaka fgf8 resulted in a phenotype identical to the fgfr1hdf mutant, suggesting that like its mouse counterpart, Fgf8 is a major ligand for Fgfr1 in medaka early embryogenesis. Intriguingly, Fgf8 and Fgfr1 in zebrafish are also suggested to form a major ligand–receptor pair, but their function is much diverged, as the zebrafish fgfr1 morphant and zebrafish fgf8 mutant acerebellar (ace) only fail to develop the MHB, but develop nearly unaffected trunk and tail. These results provide evidence that teleost fish have evolved divergent functions of Fgf8–Fgfr1 while maintaining the ligand–receptor relationships. Comparative analysis using different fish is thus invaluable for shedding light on evolutionary diversification of gene function

    Consequences of Lineage-Specific Gene Loss on Functional Evolution of Surviving Paralogs: ALDH1A and Retinoic Acid Signaling in Vertebrate Genomes

    Get PDF
    Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss

    Injection of DNA into the medaka oocyte nucleus

    No full text
    corecore