206 research outputs found

    La protection du concubin survivant

    Get PDF

    Biogeochemical consequences of macrofauna burrow ventilation†

    Get PDF
    The burrow walls created by macrofauna in aquatic sediments are sites of intense chemical mass transfer. Quantitative measurement of their significance is, however, difficult because chemistry in the immediate vicinity of burrow walls is temporally dynamic due to periodic ventilation of burrows by macrofauna. A temporally dynamic, 2D multicomponent diffusion-reaction model was utilized to depict the magnitude and time dependency of chemical mass transfer in the immediate vicinity of burrow walls as well as at the water/sediment interface. The simulation results illustrate that sediment particles, pore water, and microorganisms within a few millimeters of burrow walls experience significant oscillation in pH (as much as two pH units) and dissolved oxygen concentration (between saturation and near anoxia) whereas such oscillation is absent at the water/ sediment interface. The geochemical oscillation is expected to affect the net stability of mineral phases, activities and community structures of microorganisms, and rates and magnitudes of microbial diagenetic reactions

    La protection du concubine survivant (2)

    Get PDF

    Un essai sur la protection legale de la concubinage

    Get PDF

    Characterization of TRPA channels in the starfish Patiria pectinifera: involvement of thermally activated TRPA1 in thermotaxis in marine planktonic larvae.

    Get PDF
    The vast majority of marine invertebrates spend their larval period as pelagic plankton and are exposed to various environmental cues. Here we investigated the thermotaxis behaviors of the bipinnaria larvae of the starfish, Patiria pectinifera, in association with TRPA ion channels that serve as thermal receptors in various animal species. Using a newly developed thermotaxis assay system, we observed that P. pectinifera larvae displayed positive thermotaxis toward high temperatures, including toward temperatures high enough to cause death. In parallel, we identified two TRPA genes, termed PpTRPA1 and PpTRPA basal, from this species. We examined the phylogenetic position, spatial expression, and channel properties of each PpTRPA. Our results revealed the following: (1) The two genes diverged early in animal evolution; (2) PpTRPA1 and PpTRPA basal are expressed in the ciliary band and posterior digestive tract of the larval body, respectively; and (3) PpTRPA1 is activated by heat stimulation as well as by known TRPA1 agonists. Moreover, knockdown and rescue experiments demonstrated that PpTRPA1 is involved in positive thermotaxis in P. pectinifera larvae. This is the first report to reveal that TRPA1 channels regulate the behavioral response of a marine invertebrate to temperature changes during its planktonic larval period
    corecore