14 research outputs found

    Aging and CMV Infection Affect Pre-existing SARS-CoV-2-Reactive CD8⁺ T Cells in Unexposed Individuals

    Get PDF
    加齢やサイトメガロウイルス感染が新型コロナウイルス反応性キラーT細胞に与える影響. 京都大学プレスリリース. 2021-08-23.Severe COVID-19 symptoms in the elderly are consistent with a weaker immune system. 京都大学プレスリリース. 2021-08-23.Age is a major risk factor for COVID-19 severity, and T cells play a central role in anti-SARS-CoV-2 immunity. Because SARS-CoV-2-cross-reactive T cells have been detected in unexposed individuals, we investigated the age-related differences in pre-existing SARS-CoV-2-reactive T cells. SARS-CoV-2-reactive CD4⁺ T cells from young and elderly individuals were mainly detected in the central memory fraction and exhibited similar functionalities and numbers. Naïve-phenotype SARS-CoV-2-reactive CD8⁺ T cell populations decreased markedly in the elderly, while those with terminally differentiated and senescent phenotypes increased. Furthermore, senescent SARS-CoV-2-reactive CD8⁺ T cell populations were higher in cytomegalovirus seropositive young individuals compared to seronegative ones. Our findings suggest that age-related differences in pre-existing SARS-CoV-2-reactive CD8+ T cells may explain the poor outcomes in elderly patients and that cytomegalovirus infection is a potential factor affecting CD8⁺ T cell immunity against SARS-CoV-2. Thus, this study provides insights for developing effective therapeutic and vaccination strategies for the elderly

    Impaired CD4⁺ T cell response in older adults is associated with reduced immunogenicity and reactogenicity of mRNA COVID-19 vaccination

    Get PDF
    高齢者のT細胞応答は立ち上がりが遅く収束は早い --新型コロナワクチン接種機会を活用した免疫応答の個人差・年齢差の解明--. 京都大学プレスリリース. 2023-01-13.T-Cell Responses in the Elderly Rise Slowly and Contract Quickly --Learning About Individual and Age Differences in Immune Response From COVID-19 Vaccinations--. 京都大学プレスリリース. 2023-01-13.Whether age-associated defects in T cells impact the immunogenicity and reactogenicity of mRNA vaccines remains unclear. Using a vaccinated cohort (n = 216), we demonstrated that older adults (aged ≥65 years) had fewer vaccine-induced spike-specific CD4⁺ T cells including CXCR3⁺ circulating follicular helper T cells and the TH1 subset of helper T cells after the first dose, which correlated with their lower peak IgG levels and fewer systemic adverse effects after the second dose, compared with younger adults. Moreover, spike-specific TH1 cells in older adults expressed higher levels of programmed cell death protein 1, a negative regulator of T cell activation, which was associated with low spike-specific CD8⁺ T cell responses. Thus, an inefficient CD4⁺ T cell response after the first dose may reduce the production of helper T cytokines, even after the second dose, thereby lowering humoral and cellular immunity and reducing systemic reactogenicity. Therefore, enhancing CD4⁺ T cell response following the first dose is key to improving vaccine efficacy in older adults

    Voxel-based correlation of 18F-THK5351 accumulation and gray matter volume in the brain of cognitively normal older adults

    Get PDF
    BackgroundsAlthough neurofibrillary tangles (NFTs) mainly accumulate in the medial temporal lobe with human aging, only a few imaging studies have investigated correlations between NFT accumulation and gray matter (GM) volume in cognitively normal older adults. Here, we investigated the correlations between 18F-THK5351 accumulation and GM volume at the voxel level.Material and methodsWe recruited 47 amyloid-negative, cognitively normal, older adults (65.0 ± 7.9 years, 26 women), who underwent structural magnetic resonance imaging, 11C-Pittsburgh compound-B and 18F-THK5351 PET scans, and neuropsychological assessment. The magnetic resonance and 18F-THK5351 PET images were spatially normalized using Statistical Parametric Mapping 12. Voxel-wise correlations between 18F-THK5351 accumulation and GM volume were evaluated using the Biological Parametric Mapping toolbox.ResultsA significant negative correlation (p < 0.001) between 18F-THK5351 accumulation and GM volume was detected in the bilateral medial temporal lobes.ConclusionsVoxel-wise correlation analysis revealed a significant negative correlation between 18F-THK5351 accumulation and GM volume in the medial temporal lobe in individuals without amyloid-β deposits. These results may contribute to a better understanding of the pathophysiology of primary age-related tauopathy in human aging

    Regulation of Pancreatic β Cell Mass by Cross-Interaction between CCAAT Enhancer Binding Protein β Induced by Endoplasmic Reticulum Stress and AMP-Activated Protein Kinase Activity

    Get PDF
    During the development of type 2 diabetes, endoplasmic reticulum (ER) stress leads to not only insulin resistance but also to pancreatic beta cell failure. Conversely, cell function under various stressed conditions can be restored by reducing ER stress by activating AMP-activated protein kinase (AMPK). However, the details of this mechanism are still obscure. Therefore, the current study aims to elucidate the role of AMPK activity during ER stress-associated pancreatic beta cell failure. MIN6 cells were loaded with 5-amino-1-ϐ-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) and metformin to assess the relationship between AMPK activity and CCAAT enhancer binding protein ϐ (C/EBPϐ) expression levels. The effect of C/EBPϐ phosphorylation on expression levels was also investigated. Vildagliptin and metformin were administered to pancreatic beta cell-specific C/EBPϐ transgenic mice to investigate the relationship between C/EBPϐ expression levels and AMPK activity in the pancreatic islets. When pancreatic beta cells are exposed to ER stress, the accumulation of the transcription factor C/EBPϐ lowers the AMP/ATP ratio, thereby decreasing AMPK activity. In an opposite manner, incubation of MIN6 cells with AICAR or metformin activated AMPK, which suppressed C/EBPϐ expression. In addition, administration of the dipeptidyl peptidase-4 inhibitor vildagliptin and metformin to pancreatic beta cell-specific C/EBPϐ transgenic mice decreased C/EBPϐ expression levels and enhanced pancreatic beta cell mass in proportion to the recovery of AMPK activity. Enhanced C/EBPϐ expression and decreased AMPK activity act synergistically to induce ER stress-associated pancreatic beta cell failure

    Dissociation of Tau Deposits and Brain Atrophy in Early Alzheimer’s Disease: A Combined Positron Emission Tomography/Magnetic Resonance Imaging Study

    Get PDF
    The recent advent of tau-specific positron emission tomography (PET) has enabled in vivo assessment of tau pathology in Alzheimer’s disease (AD). However, because PET scanners have limited spatial resolution, the measured signals of small brain structures or atrophied areas are underestimated by partial volume effects (PVEs). The aim of this study was to determine whether partial volume correction (PVC) improves the precision of measures of tau deposits in early AD. We investigated tau deposits in 18 patients with amyloid-positive early AD and in 36 amyloid-negative healthy controls using 18F-THK5351 PET. For PVC, we applied the SPM toolbox PETPVE12. The PET images were then spatially normalized and subjected to voxel-based group analysis using SPM12 for comparison between the early AD patients and healthy controls. We also compared these two groups in terms of brain atrophy using voxel-based morphometry of MRI. We found widespread neocortical tracer retention predominantly in the posterior cingulate and precuneus areas, but also in the inferior temporal lobes, inferior parietal lobes, frontal lobes, and occipital lobes in the AD patients compared with the controls. The pattern of tracer retention was similar between before and after PVC, suggesting that PVC had little effect on the precision of tau load measures. Gray matter atrophy was detected in the medial/lateral temporal lobes and basal frontal lobes in the AD patients. Interestingly, only a few associations were found between atrophy and tau deposits, even after PVC. In conclusion, PVC did not significantly affect 18F-THK5351 PET measures of tau deposits. This discrepancy between tau deposits and atrophy suggests that tau load precedes atrophy

    Harmonized Z-Scores Calculated from a Large-Scale Normal MRI Database to Evaluate Brain Atrophy in Neurodegenerative Disorders

    No full text
    Alzheimer’s disease (AD), the most common type of dementia in elderly individuals, slowly and progressively diminishes the cognitive function. Mild cognitive impairment (MCI) is also a significant risk factor for the onset of AD. Magnetic resonance imaging (MRI) is widely used for the detection and understanding of the natural progression of AD and other neurodegenerative disorders. For proper assessment of these diseases, a reliable database of images from cognitively healthy participants is important. However, differences in magnetic field strength or the sex and age of participants between a normal database and an evaluation data set can affect the accuracy of the detection and evaluation of neurodegenerative disorders. We developed a brain segmentation procedure, based on 30 Japanese brain atlases, and suggest a harmonized Z-score to correct the differences in field strength and sex and age from a large data set (1235 cognitively healthy participants), including 1.5 T and 3 T T1-weighted brain images. We evaluated our harmonized Z-score for AD discriminative power and classification accuracy between stable MCI and progressive MCI. Our procedure can perform brain segmentation in approximately 30 min. The harmonized Z-score of the hippocampus achieved high accuracy (AUC = 0.96) for AD detection and moderate accuracy (AUC = 0.70) to classify stable or progressive MCI. These results show that our method can detect AD with high accuracy and high generalization capability. Moreover, it may discriminate between stable and progressive MCI. Our study has some limitations: the age groups in the 1.5 T data set and 3 T data set are significantly different. In this study, we focused on AD, which is primarily a disease of elderly patients. For other diseases in different age groups, the harmonized Z-score needs to be recalculated using different data sets

    In vivo evaluation of gray and white matter volume loss in the parkinsonian variant of multiple system atrophy using SPM8 plus DARTEL for VBM

    Get PDF
    AbstractIn multiple system atrophy with predominant parkinsonism (MSA-P), several voxel-based morphometry (VBM) studies have revealed gray matter loss; however, the white matter volume changes have been rarely reported. We investigated the volume changes of white matter as well as gray matter by VBM. A retrospective MRI study was performed in 20 patients with MSA-P and 30 age-matched healthy controls. We applied VBM with statistical parametric mapping (SPM8) plus diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) to explore the regional atrophy of gray and white matter in all of the MSA-P patients, 14 patients with left-side dominant and 6 patients with right-side dominant onset as compared to controls. In all of the MSA-P patients, VBM revealed a significant volume reduction of gray matter in the bilateral putamina, cerebellums and dorsal midbrain. White matter loss was located in bilateral globus pallidi, external capsules extending to the midbrain, right subcortical to precentral area through internal capsule, the pons, bilateral middle cerebellar peduncles and left cerebellum. In left-side dominant MSA-P patients, the gray and white matter volume loss was detected predominantly on the right side and vice versa in right-side dominant MSA-P patients. A correlation with disease duration and severity was not detected. VBM using SPM8 plus DARTEL detected significant volume loss not only in the gray but also in the white matter of the area affected by MSA-P
    corecore