121 research outputs found

    Identification of the ns and nd Rydberg states of O2 for n=3–5

    Get PDF
    The 4s‐3d and 5s‐4dRydberg complexes of diatomic oxygen have been studied by (2+1) resonance‐enhanced multiphoton ionization of the X  3∑ g − ground state of O2. We have located and identified at least two vibrational levels of each of the following states: Three of four expected 4sσ Π states; all four expected 5sσ Π states; 18 of 22 expected 3d states (with only the states of the 3dσ orbital remaining unobserved); and 5 of the 10 predicted 4dπ states. State assignments were assisted by the following: the results of rotational cooling and laser polarization experiments which facilitated the rotational analysis, band positions, band intensities, and parameterized calculations. The experimentally determined state locations are compared with the state locations obtained from ab initio calculations. We have carried out isotope experiments and rotational linewidth analysis to study in some detail the mixing between the Rydberg states and the repulsive valence states as well as the mixing between the Rydberg states themselves. We conclude that direct predissociation dominates indirect predissociation as a dissociative mechanism, but there is evidence of Δv≠0 interactions which perturb the rotational structure of the 3dπ∑ and Δ states. The relative intensities of the states detected are found to span a range in excess of 104 with the nsσ Π states being the weakest and the ndπ ∑ states being the strongest. Photoionization of the ndπ ∑ states appears to be most affected by the shape resonance in the continuum. Our measurements confirm the expectation that many of the properties of the Rydberg states in the same series scale as (n*)−3

    Identification of the nd Δ and Σ States and the 1,3Φ←←X  3Σ− g Transition of O2 by Resonant Multiphoton Ionization

    Get PDF
    Spectra of the 3dRydberg state region of O2 have been obtained by two‐photon resonant ionization of the ground electronic state. By varying the rotational distribution and radiation polarization, all observed bands were identified and attributed to excitation of Σ, Δ, and Φ states. Earlier assignments were corrected. The Δ and Φ assignments are complete while the Σ assignments are so far incomplete

    In situ measurements of trace gases, PM, and aerosol optical properties during the 2017 NW US wildfire smoke event

    Get PDF
    In mid-August through mid-September of 2017 a major wildfire smoke and haze episode strongly impacted most of the NW US and SW Canada. During this period our ground-based site in Missoula, Montana, experienced heavy smoke impacts for ∼ 500h (up to 471μ-3 hourly average PM2.5). We measured wildfire trace gases, PM2.5 (particulate matter ≤2.5μm in diameter), and black carbon and submicron aerosol scattering and absorption at 870 and 401nm. This may be the most extensive real-time data for these wildfire smoke properties to date. Our range of trace gas ratios for δNH3 δCO and δC2H4 δCO confirmed that the smoke from mixed, multiple sources varied in age from ∼ 2-3h to ∼ 1-2 days. Our study-average δCH4 δCO ratio (0.166±0.088) indicated a large contribution to the regional burden from inefficient smoldering combustion. Our δBC δCO ratio (0.0012±0.0005) for our ground site was moderately lower than observed in aircraft studies (∼ 0.0015) to date, also consistent with a relatively larger contribution from smoldering combustion. Our δBC δPM2.5 ratio (0.0095±0.0003) was consistent with the overwhelmingly non-BC (black carbon), mostly organic nature of the smoke observed in airborne studies of wildfire smoke to date. Smoldering combustion is usually associated with enhanced PM emissions, but our δPM2.5 δCO ratio (0.126±0.002) was about half the δPM1.0 δCO measured in fresh wildfire smoke from aircraft (∼ 0.266). Assuming PM2.5 is dominated by PM1, this suggests that aerosol evaporation, at least near the surface, can often reduce PM loading and its atmospheric/air-quality impacts on the timescale of several days. Much of the smoke was emitted late in the day, suggesting that nighttime processing would be important in the early evolution of smoke. The diurnal trends show brown carbon (BrC), PM2.5, and CO peaking in the early morning and BC peaking in the early evening. Over the course of 1 month, the average single scattering albedo for individual smoke peaks at 870nm increased from ∼ 0.9 to ∼ 0.96. B/scat401 B/scat870 was used as a proxy for the size and photochemical age of the smoke particles, with this interpretation being supported by the simultaneously observed ratios of reactive trace gases to CO. The size and age proxy implied that the Ångström absorption exponent decreased significantly after about 10h of daytime smoke aging, consistent with the only airborne measurement of the BrC lifetime in an isolated plume. However, our results clearly show that non-BC absorption can be important in typical regional haze and moderately aged smoke, with BrC ostensibly accounting for about half the absorption at 401nm on average for our entire data set

    Aerosol Mass and Optical Properties, Smoke Influence on O\u3csub\u3e3\u3c/sub\u3e, and High NO\u3csub\u3e3\u3c/sub\u3e Production Rates in a Western U.S. City Impacted by Wildfires

    Get PDF
    Evaluating our understanding of smoke from wild and prescribed fires can benefit from downwind measurements that include inert tracers to test production and transport and reactive species to test chemical mechanisms. We characterized smoke from fires in coniferous forest fuels for \u3e1,000 hr over two summers (2017 and 2018) at our Missoula, Montana, surface station and found a narrow range for key properties. ΔPM2.5/ΔCO was 0.1070 ± 0.0278 (g/g) or about half the age-independent ratios obtained at free troposphere elevations (0.2348 ± 0.0326). The average absorption Ångström exponent across both years was 1.84 ± 0.18, or about half the values available for very fresh smoke. Brown carbon (BrC) was persistent (~50% of absorption at 401 nm) in both years, despite differences in smoke age. ΔBC/ΔCO doubled from 2017 to 2018, but the average across 2 years was within 33% of recent airborne measurements, suggesting low sampling bias among platforms. Switching from a 1.0 to a 2.5 micron cutoff increased the mass scattering and mass absorption coefficients, suggesting often overlooked supermicron particles impact the optical properties of moderately aged smoke. O3 was elevated ~6 ppb on average over a full diurnal period when wildfire smoke was present, and smoke-associated O3 increases were highest (~9 pbb) at night, suggesting substantial upwind production. NOx was mostly local in origin. NOx spurred high rates of NO3 production, including in the presence of wildfire smoke (up to 2.44 ppb hr−1) and at least one nighttime BrC secondary formation event that could have impacted next-day photochemistry

    Open-Path Fourier Transform Infrared Studies of Large-Scale Laboratory Biomass Fires

    Get PDF
    A series of nine large-scale, open fires was conducted in the Intermountain Fire Sciences Laboratory (IFSL) controlled-environment combustion facility. The fuels were pure pine needles or sagebrush or mixed fuels simulating forest-floor, ground fires; crown fires; broadcast burns; and slash pile burns. Mid-infrared spectra of the smoke were recorded throughout each fire by open path Fourier transform infrared (FTIR) spectroscopy at 0.12 cm−1 resolution over a 3 m cross-stack pathlength and analyzed to provide pseudocontinuous, simultaneous concentrations of up to 16 compounds. Simultaneous measurements were made of fuel mass loss, stack gas temperature, and total mass flow up the stack. The products detected are classified by the type of process that dominates in producing them. Carbon dioxide is the dominant emission of (and primarily produced by) flaming combustion, from which we also measure nitric oxide, nitrogen dioxide, sulfur dioxide, and most of the water vapor from combustion and fuel moisture. Carbon monoxide is the dominant emission formed primarily by smoldering combustion from which we also measure carbon dioxide, methane, ammonia, and ethane. A significant fraction of the total emissions is unoxidized pyrolysis products; examples are methanol, formaldehyde, acetic and formic acid, ethene (ethylene), ethyne (acetylene), and hydrogen cyanide. Relatively few previous data exist for many of these compounds and they are likely to have an important but as yet poorly understood role in plume chemistry. Large differences in emissions occur from different fire and fuel types, and the observed temporal behavior of the emissions is found to depend strongly on the fuel bed and product type

    Evaluation of Adsorption Effects on Measurements of Ammonia, Acetic Acid, and Methanol

    Get PDF
    [1] We examined how adsorption and desorption of gases from inlets and a cell could affect the accuracy of closed-cell FTIR measurements of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitric oxide (NO), nitrogen dioxide (NO2), methanol (CH3OH), acetic acid (CH3COOH), and ammonia (NH3). When standards were delivered to the cell through a stainless steel inlet, temporarily reduced transmission was observed for CH3OH and NH3. However, a halocarbon wax coated inlet (normally used on the system) had excellent transmission (comparable to room temperature Teflon) for both CH3OH and NH3, even at temperatures as low as 5°C. Thus the wax is valuable for coating sampling system components that cannot be fashioned from Teflon. The instrument had a delayed response (∼10–40 s) for NH3 only, which was attributed to passivation of the Pyrex multipass cell. To determine sampling artifacts that could arise from the complex sample matrix presented by smoke, the closed-cell FTIR system was intercompared with an open-path FTIR system (which is immune to sampling artifacts) in well-mixed smoke. A similar cell passivation delay for NH3 was the only artifact found in this test. Overall, the results suggest that ∼10 s is sufficient to detect \u3e80% of an NH3/CO ratio sampled by our fast-flow, closed-cell system. Longer sampling times or consecutive samples return better results. In field campaigns the closed-cell system sampling times were normally 10 to \u3e100 s so NH3 was probably underestimated by 5–15%

    Trace Gas Emissions from Laboratory Biomass Fires Measured by Open-Path Fourier Transform Infrared Spectroscopy: Fires in Grass and Surface Fuels

    Get PDF
    The trace gas emissions from six biomass fires, including three grass fires, were measured using a Fourier transform infrared (FTIR) spectrometer coupled to an open-path, multipass cell (OP-FTIR). The quantified emissions consisted of carbon dioxide, nitric oxide, water vapor, carbon monoxide, methane, ammonia, ethylene, acetylene, isobutene, methanol, acetic acid, formic acid, formaldehyde, and hydroxyacetaldehyde. By including grass fires in this study we have now measured smoke composition from fires in each major vegetation class. The emission ratios of the oxygenated compounds, formaldehyde, methanol, and acetic acid, were 1–2% of CO in the grass fires, similar to our other laboratory and field measurements but significantly higher than in some other studies. These oxygenated compounds are important, as they affect O3 and HOx chemistry in both biomass fire plumes and the free troposphere. The OP-FTIR data and the simultaneously collected canister data indicated that the dominant C4 emission was isobutene (C4H8) and not 1-butene. The rate constant for the reaction of isobutene with the OH radical is 60% larger than that of 1-butene. We estimate that 67±9% of the fuel nitrogen was volatilized with the major nitrogen emissions, ammonia, and nitric oxide, accounting for 22±8%

    Trace Gas Emissions from the Production and Use of Domestic Biofuels in Zambia Measured by Open-Path Fourier Transform Infrared Spectroscopy

    Get PDF
    [1] Domestic biomass fuels (biofuels) were recently estimated to be the second largest source of carbon emissions from global biomass burning. Wood and charcoal provide approximately 90% and 10% of domestic energy in tropical Africa. In September 2000, we used open-path Fourier transform infrared (OP-FTIR) spectroscopy to quantify 18 of the most abundant trace gases emitted by wood and charcoal cooking fires and an earthen charcoal-making kiln in Zambia. These are the first in situ measurements of an extensive suite of trace gases emitted by tropical biofuel burning. We report emission ratios (ER) and emission factors (EF) for (in order of abundance) carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), acetic acid (CH3COOH), methanol (CH3OH), formaldehyde (HCHO), ethene (C2H4), ammonia (NH3), acetylene (C2H2), nitric oxide (NO), ethane (C2H6), phenol (C6H5OH), propene (C3H6), formic acid (HCOOH), nitrogen dioxide (NO2), hydroxyacetaldehyde (HOCH2CHO), and furan (C4H4O). Compared to previous work, our emissions of organic acids and NH3 are 3–6.5 times larger. Another significant finding is that reactive oxygenated organic compounds account for 70–80% of the total nonmethane organic compounds (NMOC). For most compounds, the combined emissions from charcoal production and charcoal burning are larger than the emissions from wood fires by factors of 3–10 per unit mass of fuel burned and ∼2 per unit energy released. We estimate that Zambian savanna fires produce more annual CO2, HCOOH, and NOx than Zambian biofuel use by factors of 2.5, 1.7, and 5, respectively. However, biofuels contribute larger annual emissions of CH4, CH3OH, C2H2, CH3COOH, HCHO, and NH3 by factors of 5.1, 3.9, 2.7, 2.4, 2.2, and 2.0, respectively. Annual CO and C2H4 emissions are approximately equal from both sources. Coupling our data with recent estimates of global biofuel consumption implies that global biomass burning emissions for several compounds are significantly larger than previously reported. Biofuel emissions are produced year-round, disperse differently than savanna fire emissions, and could strongly impact the tropical troposphere
    corecore