153 research outputs found

    Nickel-based phosphide superconductor with infinite-layer structure, BaNi2P2

    Full text link
    Analogous to cuprate high-Tc superconductors, a NiP-based compound system has several crystals in which the Ni-P layers have different stacking structures. Herein, the properties of BaNi2P2 are reported. BaNi2P2 has an infinite-layer structure, and shows a superconducting transition at ~3 K. Moreover, it exhibits metallic conduction and Pauli paramagnetism in the temperature range of 4-300 K. Below 3 K, the resistivity sharply drops to zero, and the magnetic susceptibility becomes negative, while the volume fraction of the superconducting phase estimated from the diamagnetic susceptibility reaches ~100 vol.% at 1.9 K. These observations substantiate that BaNi2P2 is a bulk superconductor.Comment: 9 pages, 4 figures, Solid State Communications, in press. Received 4 March 2008. Accepted 2 May 2008. Available online 14 May 200

    Non-calcareous beachrock found in Akagurisaki, Ohi Town, Fukui Prefecture

    Get PDF
    Beachrock which was formed about 0.5 meter higher than high tide is found in Akagurisaki, Ohi Town, Fukui Prefecture. The outcrops always get wet by spring water. The sediments are composed of well sorted rounded gravels and sands but calcareous shell is not found at all. Intergranular space is occupied by white amorphous cement. Magnesium and silicon rich composition of the cement is obtained by EPMA analysis. There is a conjecture that the magnesium rich cement was precipitated in spite of solution of calcareous shell under saturated state by spring water, because calcium has a higher tendency to ionize than magnesium

    CD40 and IFN-γ dependent T cell activation by human bronchial epithelial cells

    Get PDF
    We examined whether freshly isolated human bronchial cells (HBEC) and bronchial epithelial cell line/ BEAS-2B cells expressed surface molecules required for APC function. These cells expressed CD40 and ICAM-1, but not B7-1, B7-2 or HLA-DR molecules. Treatment of these cells with IFN-γ resulted in enhanced expression of CD40 and ICAM-1 as well as induction of HLA-DR expression. Th2 cytokines such as IL-4 and IL-5, proinflammatory cytokine of GM-CSF and nonspecific activator endotoxin had no effect on these phenotypic expressions. Functional examinations showed that allogeneic lymphocytes purified from peripheral blood strongly proliferated in response to BEAS-2B cells cultured with IFN-γ, but only weakly compared with those without IFN-γ. When allogeneic lymphocytes were purified to CD4+ cells, the proliferative response against BEAS-2B cells was abolished. Blockade of CD40-CD40L interaction by anti-CD40 antibody also inhibited the proliferation of lymphocytes to BEAS-2B cells, although this treatment showed a minimum effect on the response to allogeneic MNC. Thus, bronchial epithelial cells have the ability to present allogeneic antigens to T cells in both CD40- and IFN-γ- dependent manners under the presence of third party cells that transduce co-stimulatory signals

    Characterization of a New Saccharomyces cerevisiae Isolated From Hibiscus Flower and Its Mutant With L-Leucine Accumulation for Awamori Brewing

    Get PDF
    Since flavors of alcoholic beverages produced in fermentation process are affected mainly by yeast metabolism, the isolation and breeding of yeasts have contributed to the alcoholic beverage industry. To produce awamori, a traditional spirit (distilled alcoholic beverage) with unique flavors made from steamed rice in Okinawa, Japan, it is necessary to optimize yeast strains for a diversity of tastes and flavors with established qualities. Two categories of flavors are characteristic of awamori; initial scented fruity flavors and sweet flavors that arise with aging. Here we isolated a novel strain of Saccharomyces cerevisiae from hibiscus flowers in Okinawa, HC02-5-2, that produces high levels of alcohol. The whole-genome information revealed that strain HC02-5-2 is contiguous to wine yeast strains in a phylogenic tree. This strain also exhibited a high productivity of 4-vinyl guaiacol (4-VG), which is a precursor of vanillin known as a key flavor of aged awamori. Although conventional awamori yeast strain 101-18, which possesses the FDC1 pseudogene does not produce 4-VG, strain HC02-5-2, which has the intact PAD1 and FDC1 genes, has an advantage for use in a novel kind of awamori. To increase the contents of initial scented fruity flavors, such as isoamyl alcohol and isoamyl acetate, we attempted to breed strain HC02-5-2 targeting the L-leucine synthetic pathway by conventional mutagenesis. In mutant strain T25 with L-leucine accumulation, we found a hetero allelic mutation in the LEU4 gene encoding the Gly516Ser variant α-isopropylmalate synthase (IPMS). IPMS activity of the Gly516Ser variant was less sensitive to feedback inhibition by L-leucine, leading to intracellular L-leucine accumulation. In a laboratory-scale test, awamori brewed with strain T25 showed higher concentrations of isoamyl alcohol and isoamyl acetate than that brewed with strain HC02-5-2. Such a combinatorial approach to yeast isolation, with whole-genome analysis and metabolism-focused breeding, has the potentials to vary the quality of alcoholic beverages

    Thermal conductivity of Mg-doped CuGeO_3 at very low temperatures: Heat conduction by antiferromagnetic magnons

    Full text link
    Thermal conductivity \kappa is measured at very low temperatures down to 0.28 K for pure and Mg-doped CuGeO_3 single crystals. The doped samples carry larger amount of heat than the pure sample at the lowest temperature. This is because antiferromagnetic magnons appear in the doped samples and are responsible for the additional heat conductivity, while \kappa of the pure sample represents phonon conductivity at such low temperatures. The maximum energy of the magnon is estimated to be much lower than the spin-Peierls-gap energy. The result presents the first example that \kappa at very low temperatures probes the magnon transport in disorder-induced antiferromagnetic phase of spin-gap systems

    Fully Gapped Single-Particle Excitations in the Lightly Doped Cuprates

    Full text link
    The low-energy excitations of the lightly doped cuprates were studied by angle-resolved photoemission spectroscopy. A finite gap was measured over the entire Brillouin zone, including along the d_{x^2 - y^2} nodal line. This effect was observed to be generic to the normal states of numerous cuprates, including hole-doped La_{2-x}Sr_{x}CuO_{4} and Ca_{2-x}Na_{x}CuO_{2}Cl_{2} and electron-doped Nd_{2-x}Ce_{x}CuO_{4}. In all compounds, the gap appears to close with increasing carrier doping. We consider various scenarios to explain our results, including the possible effects of chemical disorder, electronic inhomogeneity, and a competing phase.Comment: To appear in Phys. Rev.
    corecore