878 research outputs found
Some remarks about simulation of cosmic ray phenomena with use of nuclear interaction models based on the current SPS proton-antiproton data
The x-y controversy is studied by introducing models with as many features (except for x and y distributions) in common, as possible, to avoid an extrapolation problem, only primary energies of 500 TeV are considered. To prove the point, Monte Carlo simulations are performed of EAS generated by 500 TeV vertical primary protons. Four different nuclear interaction models were used. Two of them are described elsewhere. Two are: (1) Model M-Y00 - with inclusive x and y distributions behaving in a scaling way; and (2) Model M-F00 - at and below ISR energies (1 TeV in Lab) exactly equivalent to the above, then gradually changing to provide the distributions in rapidity at 155 TeV as given by SPS proton-antiproton. This was achieved by gradual decrease in the scale unit in x distributions of produced secondaries, as interaction energy increases. Other modifications to the M-Y00 model were made
Hadron cross sections at ultra high energies and unitarity bounds on diffraction dissociation
It was shown that if unitarity bounds on diffractive cross sections are valid at ultra high energies then diffractive dominance models which ascribe the increase in total hadron-hadron cross sections to diffractive processes only are ruled out. Calculations also show that cosmic ray cross sections derived from air shower experiments at ultra high energies clearly rule out models for hadron-hadron cross sections with nat.log ns energy dependence and favor those with nat.log n(2)s variation
Electrons, muons and hadrons in extensive air showers and how do they depend on nuclear interaction model, part 2
Some of the results of Monte Carlo simulations of extensive air showers for nuclear interactions models are presented. The most significant part of scaling violation effect is generated by the inclusion of rising cross-section. Among the models considered the lowest value for Eo/N(max) is obtained when rapidly rising cross-section and charge exchange are both included (model R-F01). The value is still 1.38 GeV/electron. Except at the highest energies, the sensitivity to atomic mass of the primary is greater than to specific assumptions about multiple production
Irreversible Rearrangements, Correlated Domains, and Local Structure in Aging Glasses
Bidisperse colloidal suspensions of temperature-sensitive microgel spheres were quenched from liquid to glass states by a rapid temperature drop, and then the glass was permitted to age. Irreversible rearrangements, events that dramatically change a particle’s local environment, were observed to be closely related to dynamic heterogeneity. The rate of these irreversible events decreased during aging and the the number of particles required to move as part of these irreversible rearrangements increased. Thus, the slowing dynamics of aging were governed by growing, correlated domains of particles. Additionally, short-range order developed, and a spatial decay length scale associated with orientational order was found to grow during aging
Composition of primary cosmic rays near the bend from a study of hadrons in air showers at sea level
Data on hadrons in air showers arriving at sea level were studied to find sensitivity to primary cosmic ray composition. The rate of showers which satisfy minimum shower density and hadron energy requirements as well as the rate of showers containing hadrons delayed with respect to the electron shower front are compared to Monte Carlo simulations. The data on the rate of total triggers and delayed hadrons are compared to predicted rates for two models of primary composition. The data are consistent with models which require an increasing heavy nuclei fraction near 10 to the 15th power eV. The spectra which are consistent with the observed rate are also compared to the observed shower size spectrum at sea level and mountain level
Correlations between short- and long-time relaxation in colloidal supercooled liquids and glasses
Spatiotemporal dynamics of short- and long-time structural relaxation are measured experimentally as a function of packing fraction, φ, in quasi-two-dimensional colloidal supercooled liquids and glasses. The relaxation times associated with long-time dynamic heterogeneity and short-time intracage motion are found to be strongly correlated and to grow by orders of magnitude with increasing φ toward dynamic arrest. We find that clusters of fast particles on the two timescales often overlap, and, interestingly, the distribution of minimum-spatial-separation between closest nonoverlapping clusters across the two timescales is revealed to be exponential with a decay length that increases with φ. In total, the experimental observations suggest short-time relaxation events are very often precursors to heterogeneous relaxation at longer timescales in glassy materials
- …