3,090 research outputs found

    Will Washington Provide Its Own Feedstocks for Biofuels?

    Get PDF
    The study finds that Washington State’s field corn, sugar beet and canola production could satisfy only a small percentage of the State’s annual gasoline or diesel consumption. Linear programming projections for 2008 showed a relatively close match between projected and actual production. Projections for 2009-2011 showed no increase in the State’s capacity to increase biofuel crop feedstocks. In comparison to crop feedstocks, Washington’s total annual lignocellulosic biomass is abundant. However, only a fraction of the biomass could be converted to biofuel due to high costs of collection and processing, competing markets for some biomass, and limitations in current technology.biofuels, biofuel feedstocks, canola, cellulosic inventories, grain corn, linear programming, Washington State

    3D integrated superconducting qubits

    Get PDF
    As the field of superconducting quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1T_1, T2,echo>20μT_{2,\rm{echo}} > 20\,\mus) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips

    Dressed Spin of Polarized 3He in a Cell

    Full text link
    We report a measurement of the modification of the effective precession frequency of polarized 3He atoms in response to a dressing field in a room temperature cell. The 3He atoms were polarized using the metastability spin-exchange method. An oscillating dressing field is then applied perpendicular to the constant magnetic field. Modification of the 3He effective precession frequency was observed over a broad range of the amplitude and frequency of the dressing field. The observed effects are compared with calculations based on quantum optics formalism.Comment: 10 pages, 4 figure

    Tidal friction in close-in satellites and exoplanets. The Darwin theory re-visited

    Full text link
    This report is a review of Darwin's classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) the capture into a 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.Comment: 30 pages, 7 figures, corrected typo

    Characterizing Multi-planet Systems with Classical Secular Theory

    Full text link
    Classical secular theory can be a powerful tool to describe the qualitative character of multi-planet systems and offer insight into their histories. The eigenmodes of the secular behavior, rather than current orbital elements, can help identify tidal effects, early planet-planet scattering, and dynamical coupling among the planets, for systems in which mean-motion resonances do not play a role. Although tidal damping can result in aligned major axes after all but one eigenmode have damped away, such alignment may simply be fortuitous. An example of this is 55 Cancri (orbital solution of Fischer et al., 2008) where multiple eigenmodes remain undamped. Various solutions for 55 Cancri are compared, showing differing dynamical groupings, with implications for the coupling of eccentricities and for the partitioning of damping among the planets. Solutions for orbits that include expectations of past tidal evolution with observational data, must take into account which eigenmodes should be damped, rather than expecting particular eccentricities to be near zero. Classical secular theory is only accurate for low eccentricity values, but comparison with other results suggests that it can yield useful qualitative descriptions of behavior even for moderately large eccentricity values, and may have advantages for revealing underlying physical processes and, as large numbers of new systems are discovered, for triage to identify where more comprehensive dynamical studies should have priority.Comment: Published in Celestial Mechanics and Dynamical Astronomy, 25 pages, 10 figure

    The benefits of interprofessional education 10 years on.

    Get PDF
    Interprofessional education (IPE) was first conceived in 1973 by a World Health Organization (WHO) expert group in Geneva. WHO member states were then charged with implementing medical education IPE pilot projects and from then to today there has a been a rapid proliferation in the number of publications on the subject. IPE has generated research into its use, conferences specific to IPE, organisations dedicated to it and policy championing it. The authors question whether there has been any major shift in the silos in which different professions might be working. The authors published an article on the benefits of IPE ( Illingworth and Chelvanayagam, 2007 ). Ten years have now passed and many changes have been implemented and experienced in health and social care and therefore a review of the literature is required. Also, it is 7 years since the publication of WHO's report outlining the role of IPE in the preparation of health professionals ( WHO, 2010 ) and, increasingly, UK Government policy champions collaborative and integrated working. The conclusions from the 2007 article acknowledged the development of IPE; however, it highlighted the need for empirical evidence to demonstrate the effectiveness of IPE in service user and carer outcomes. This article will explore whether IPE has achieved the benefits discussed in the previous article and what developments have occurred since it was published

    Urine THC Metabolite Levels Correlate with Striatal D2/D3 Receptor Availability

    Get PDF
    poster abstractRationale: Although the incidence of cannabis abuse/dependence in Americans is rising, the neurobiology of cannabis addiction is not well understood. Recent imaging studies have demonstrated deficits in striatal D2/D3 receptor availability in several substance-dependent populations. However, this has not been studied in chronic cannabis users. Objective: The purpose of this study was to compare striatal D2/D3 receptor availability between currently using chronic cannabis users and healthy controls. Methods: Eighteen right-handed males, age 18-35 were studied. Ten subjects were chronic cannabis users; eight were demographically matched controls. Subject eligibility was determined during a screening interview, which included SCID-I and SCID-II assessments, self-report of past substance use, and drug toxicology screening. Subjects underwent a [11C]raclopride (RAC) PET scan; striatal RAC binding potential (BPND) was calculated on a voxel-wise basis with the multilinear reference tissue method. Prior to scanning, urine samples were obtained from cannabis users for quantification of urine Δ-9-tetrahydrocannabinol (THC) and THC metabolites (11-nor-Δ-9-THC-9-carboxylic acid; THC-COOH). Statistical analyses were conducted at voxel-wise level within the striatum. Two-sample t-tests were used to test for differences in BPND between groups. For cannabis subjects, multiple regression analyses were used to test for correlations between striatal BPND and urine THC/THC metabolite levels. Results: There were no differences in BPND between cannabis smokers and healthy controls. Smokers – regardless of substance – had 10% lower D2/D3 availability than non-smokers. Voxel-wise analyses revealed that striatal RAC BPND values were associated with urine levels of cannabis metabolites. Conclusions: Cannabis and cannabis metabolites in urine, markers of recent cannabis consumption, are negatively correlated with striatal RAC BPND. This provides the first evidence that degree of cannabis use is related to changes in the central DA system. Low BPND in both cannabis and cigarette users may indicate a deficiency in D2/D3 receptors as a function of chronic exposure to either or both substances. Alternatively, endogenous dopamine levels may be higher in smokers as a result of MAO inhibition from beta-carbolines in the inhaled smoke. Additional studies are needed to understand the complex relationships between chronic cannabis use and the dopamine system

    Primary cilia elongation in response to interleukin-1 mediates the inflammatory response

    Get PDF
    Primary cilia are singular, cytoskeletal organelles present in the majority of mammalian cell types where they function as coordinating centres for mechanotransduction, Wnt and hedgehog signalling. The length of the primary cilium is proposed to modulate cilia function, governed in part by the activity of intraflagellar transport (IFT). In articular cartilage, primary cilia length is increased and hedgehog signaling activated in osteoarthritis (OA). Here, we examine primary cilia length with exposure to the quintessential inflammatory cytokine interleukin-1 (IL-1), which is up-regulated in OA. We then test the hypothesis that the cilium is involved in mediating the downstream inflammatory response. Primary chondrocytes treated with IL-1 exhibited a 50 % increase in cilia length after 3 h exposure. IL-1-induced cilia elongation was also observed in human fibroblasts. In chondrocytes, this elongation occurred via a protein kinase A (PKA)-dependent mechanism. G-protein coupled adenylate cyclase also regulated the length of chondrocyte primary cilia but not downstream of IL-1. Chondrocytes treated with IL-1 exhibit a characteristic increase in the release of the inflammatory chemokines, nitric oxide and prostaglandin E2. However, in cells with a mutation in IFT88 whereby the cilia structure is lost, this response to IL-1 was significantly attenuated and, in the case of nitric oxide, completely abolished. Inhibition of IL-1-induced cilia elongation by PKA inhibition also attenuated the chemokine response. These results suggest that cilia assembly regulates the response to inflammatory cytokines. Therefore, the cilia proteome may provide a novel therapeutic target for the treatment of inflammatory pathologies, including OA

    A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants

    Get PDF
    Transposition of the Anthirrinum majus Tam3 element and the Zea mays Ac element has been monitored in petunia and tobacco plants. Plant vectors were constructed with the transposable elements cloned into the leader sequence of a marker gene. Agrobacterium tumefaciens-mediated leaf disc transformation was used to introduce the transposable element constructs into plant cells. In transgenic plants, excision of the transposable element restores gene expression and results in a clearly distinguishable phenotype. Based on restored expression of the hygromycin phosphotransferase II (HPTII) gene, we established that Tam3 excises in 30% of the transformed petunia plants and in 60% of the transformed tobacco plants. Ac excises from the HPTII gene with comparable frequencies (30%) in both plant species. When the β-glucuronidase (GUS) gene was used to detect transposition of Tam3, a significantly lower excision frequency (13%) was found in both plant species. It could be shown that deletion of parts of the transposable elements Tam3 and Ac, removing either one of the terminal inverted repeats (TIR) or part of the presumptive transposase coding region, abolished the excision from the marker genes. This demonstrates that excision of the transposable element Tam3 in heterologous plant species, as documented for the autonomous element Ac, also depends on both properties. Southern blot hybridization shows the expected excision pattern and the reintegration of Tam3 and Ac elements into the genome of tobacco plants.
    corecore