12 research outputs found

    A Tool to Quantify the Functional Impact of Oscillopsia

    No full text
    BackgroundIndividuals with bilateral vestibular hypofunction (BVH) often report symptoms of oscillopsia during walking. Existing assessments of oscillopsia are limited to descriptions of severity and symptom frequency, neither of which provides a description of functional limitations attributed to oscillopsia. A novel questionnaire, the Oscillopsia Functional Impact scale (OFI) was developed to describe the impact of oscillopsia on daily life activities. Questions on the OFI ask how often individuals are able to execute specific activities considered to depend on gaze stability in an effort to link functional mobility impairments to oscillopsia for individuals with vestibular loss.MethodsSubjective reports of oscillopsia and balance confidence were recorded for 21 individuals with BVH and 48 healthy controls. Spearman correlation coefficients were calculated to determine the relationship between the OFI and oscillopsia visual analog scale (OS VAS), oscillopsia severity questionnaire (OSQ), and Activities-Specific Balance Confidence scale to demonstrate face validity. Chronbach’s α was calculated to determine internal validity for the items of the OFI. A one-way MANOVA was conducted with planned post hoc paired t-tests for group differences on all oscillopsia questionnaires using a corrected α = 0.0125.ResultsThe OFI was highly correlated with measures of oscillopsia severity (OS VAS; r = 0.69, p < 0.001) and frequency (OSQ; r = 0.84, p < 0.001) and also with the Activities-Specific Balance Confidence scale (r = −0.84, p < 0.001). Cronbach’s α for the OFI was 0.97. Individuals with BVH scored worse on all measures of oscillopsia and balance confidence compared to healthy individuals (p’s < 0.001).ConclusionThe OFI appears to capture the construct of oscillopsia in the context of functional mobility. Combining with oscillopsia metrics that quantify severity and frequency allows for a more complete characterization of the impact of oscillopsia on an individual’s daily behavior. The OFI discriminated individuals with BVH from healthy individuals

    Using Inertial Sensors to Quantify Postural Sway and Gait Performance during the Tandem Walking Test

    No full text
    Vestibular dysfunction typically manifests as postural instability and gait irregularities, in part due to inaccuracies in processing spatial afference. In this study, we have instrumented the tandem walking test with multiple inertial sensors to easily and precisely investigate novel variables that can distinguish abnormal postural and gait control in patients with unilateral vestibular hypofunction. Ten healthy adults and five patients with unilateral vestibular hypofunction were assessed with the tandem walking test during eyes open and eyes closed conditions. Each subject donned five inertial sensors on the upper body (head, trunk, and pelvis) and lower body (each lateral malleolus). Our results indicate that measuring the degree of balance and gait regularity using five body-worn inertial sensors during the tandem walking test provides a novel quantification of movement that identifies abnormalities in patients with vestibular impairment

    The instrumented timed "Up & Go" test distinguishes turning characteristics in vestibular hypofunction

    No full text
    Objective. Deficits in vestibular function increase the risk for falls while turning. However, the clinical assessment of turning in patients with vestibular dysfunction is lacking, and evidence is limited that identifies the effectiveness of vestibular physical therapy in improving turning performance. The purpose of this study was to quantify walking and turning performance during the instrumented Timed "Up & Go" (TUG) test using body-worn inertial measurement units (IMUs). Novel instrumented TUG parameters were investigated for ability to distinguish patients with unilateral vestibular deafferentation (UVD) from control groups and discriminate the differences in turning parameters of patients with UVD following vestibular physical therapy. Methods. Thirty-eight individuals were recruited following UVD surgery: 26 age-matched veteran controls with reports of dizziness not from a peripheral vestibular origin, and 12 age-matched healthy controls. Participants were donned with IMUs and given verbal instructions to complete the TUG test as fast as safely possible. The IMU-instrumented and automated assessment of the TUG test provided component-based TUG parameters, including the novel walk:turn ratio. Among the participants with UVD, 19 completed an additional instrumented TUG testing after vestibular physical therapy. Results. The walk:turn time ratio showed that turning performance in patients with UVD before rehabilitation is significantly more impaired than both the individuals with nonperipheral conditions and healthy controls. Vestibular rehabilitation significantly improved turning performance and "normalized" their walk:turn time ratio compared with healthy controls. The duration of the straight walking component in individuals with UVD before vestibular physical therapy, however, was not significantly different compared with that component in people after vestibular physical therapy and in healthy controls. Conclusion. The IMU-instrumented TUG test can be used to distinguish individuals with vestibular deafferentation and to objectively quantify the change in their turning performance after vestibular physical therapy. Impact. The IMU-based instrumented TUG parameters have the potential to quantify the efficacy of vestibular physical therapy and be adopted in the clinic

    Veterans have greater variability in their perception of binocular alignment.

    Get PDF
    IntroductionA significant population of our wounded veterans suffer long-term functional consequences of visual deficit, disorientation, dizziness, and an impaired ability to read. These symptoms may be related to damage within the otolith pathways that contribute to ocular alignment. The purpose of this study was to compare perception of vertical and torsional ocular alignment between veterans and healthy controls in an upright and supine test position.Materials and methodsVeterans (n = 26) with reports of dizziness were recruited from the East Orange Veterans Administration Hospital. Healthy controls (n = 26) were recruited from both Johns Hopkins University and the East Orange VA. Each subject performed 20 trials each of a novel vertical and torsional binocular alignment perception test. Veterans underwent semicircular canal and otolith pathway function testing.Results88% of the Veterans had an absent otolith response. Only the veterans had an abnormally large variability in perception of both vertical and torsional ocular alignment, and in both upright and supine position. Neither post-traumatic stress disorder, nor depression contributed to the misperception in binocular alignment.ConclusionsOur novel method of measuring vertical and torsional misalignment distinguishes veterans with dizziness from healthy controls. The high prevalence of absent otolith function seems to explain this result. Further studies are needed to better understand the fundamental mechanism responsible for the increased variability of perception of binocular alignment

    Data_Sheet_1.PDF

    No full text
    Background<p>Individuals with bilateral vestibular hypofunction (BVH) often report symptoms of oscillopsia during walking. Existing assessments of oscillopsia are limited to descriptions of severity and symptom frequency, neither of which provides a description of functional limitations attributed to oscillopsia. A novel questionnaire, the Oscillopsia Functional Impact scale (OFI) was developed to describe the impact of oscillopsia on daily life activities. Questions on the OFI ask how often individuals are able to execute specific activities considered to depend on gaze stability in an effort to link functional mobility impairments to oscillopsia for individuals with vestibular loss.</p>Methods<p>Subjective reports of oscillopsia and balance confidence were recorded for 21 individuals with BVH and 48 healthy controls. Spearman correlation coefficients were calculated to determine the relationship between the OFI and oscillopsia visual analog scale (OS VAS), oscillopsia severity questionnaire (OSQ), and Activities-Specific Balance Confidence scale to demonstrate face validity. Chronbach’s α was calculated to determine internal validity for the items of the OFI. A one-way MANOVA was conducted with planned post hoc paired t-tests for group differences on all oscillopsia questionnaires using a corrected α = 0.0125.</p>Results<p>The OFI was highly correlated with measures of oscillopsia severity (OS VAS; r = 0.69, p < 0.001) and frequency (OSQ; r = 0.84, p < 0.001) and also with the Activities-Specific Balance Confidence scale (r = −0.84, p < 0.001). Cronbach’s α for the OFI was 0.97. Individuals with BVH scored worse on all measures of oscillopsia and balance confidence compared to healthy individuals (p’s < 0.001).</p>Conclusion<p>The OFI appears to capture the construct of oscillopsia in the context of functional mobility. Combining with oscillopsia metrics that quantify severity and frequency allows for a more complete characterization of the impact of oscillopsia on an individual’s daily behavior. The OFI discriminated individuals with BVH from healthy individuals.</p
    corecore