176 research outputs found

    Pomerons and Jet Events at HERA

    Get PDF
    We study two and three jet events with a large rapidity gap at HERA. Unlike in the Ingelman-Schlein approach we do not adscribe a structure to the Pomeron. Instead, the coupling of the Pomeron to quarks or gluons is taken pointlike, which makes the model easy to test: the only degrees of freedom are the coupling constants of the Pomeron to the quarks or the gluons and a cutoff procedure to keep the Pomeron-gluon coupling well behaved.Comment: Latex fil

    A critical analysis of vacancy-induced magnetism in mono and bilayer graphene

    Full text link
    The observation of intrinsic magnetic order in graphene and graphene-based materials relies on the formation of magnetic moments and a sufficiently strong mutual interaction. Vacancies are arguably considered the primary source of magnetic moments. Here we present an in-depth density functional theory study of the spin-resolved electronic structure of (monoatomic) vacancies in graphene and bilayer graphene. We use two different methodologies: supercell calculations with the SIESTA code and cluster-embedded calculations with the ALACANT package. Our results are conclusive: The vacancy-induced extended π\pi magnetic moments, which present long-range interactions and are capable of magnetic ordering, vanish at any experimentally relevant vacancy concentration. This holds for σ\sigma-bond passivated and un-passivated reconstructed vacancies, although, for the un-passivated ones, the disappearance of the π\pi magnetic moments is accompanied by a very large magnetic susceptibility. Only for the unlikely case of a full σ\sigma-bond passivation, preventing the reconstruction of the vacancy, a full value of 1μB\mu_B for the π\pi extended magnetic moment is recovered for both mono and bilayer cases. Our results put on hold claims of vacancy-induced ferromagnetic or antiferromagnetic order in graphene-based systems, while still leaving the door open to σ\sigma-type paramagnetism.Comment: Submitted to Phys. Rev B, 9 page

    The pion-pion scattering amplitude. II: Improved analysis above KˉK\bar{K}K threshold

    Get PDF
    We improve, in the energy region between KˉK\bar{K}K threshold and ∼ 1.4\sim~1.4 GeV, the energy-dependent phase shift analysis of ππ\pi\pi scattering presented in a previous paper. For the S0 wave we have included more data above KˉK\bar{K}K threshold and we have taken into account systematically the elasticity data on the reaction ππ→KˉK\pi\pi\to\bar{K}K. We here made a coupled channel fit. For the D0 wave we have considered information on low energy parameters, and imposed a better fit to the f2f_2 resonance. For both waves the expressions we now find are substantially more precise than the previous ones. We also provide slightly improved D2 and P waves, including the estimated inelasticity for the first, and a more flexible parametrization between 1 and 1.42 GeV for the second. The accuracy of our amplitudes is now such that it requires a refinement of the Regge analysis, for s1/2≥1.42s^{1/2}\geq1.42 GeV, which we also carry out. We show that this more realistic input produces ππ\pi\pi scattering amplitudes that satisfy better forward dispersion relations, particularly for π0π0\pi^0\pi^0 scattering.Comment: Plain TeX. 12 figures. Minor anomaly in the K-matrix fit corrected by moving matching point to 932 MeV, and pole M1M_1 to 910.6 MeV. Results unaltere

    Evaluation of the Axial Vector Commutator Sum Rule for Pion-Pion Scattering

    Full text link
    We consider the sum rule proposed by one of us (SLA), obtained by taking the expectation value of an axial vector commutator in a state with one pion. The sum rule relates the pion decay constant to integrals of pion-pion cross sections, with one pion off the mass shell. We remark that recent data on pion-pion scattering allow a precise evaluation of the sum rule. We also discuss the related Adler--Weisberger sum rule (obtained by taking the expectation value of the same commutator in a state with one nucleon), especially in connection with the problem of extrapolation of the pion momentum off its mass shell. We find, with current data, that both the pion-pion and pion-nucleon sum rules are satisfied to better than six percent, and we give detailed estimates of the experimental and extrapolation errors in the closure discrepancies.Comment: Plain TeX file;minor changes; version to be published in Pys. Rev. D; corrected refs.12,1
    • …
    corecore