5 research outputs found

    Pretreatment technologies to increase the methane yields by anaerobic digestion in relation to cost efficiency of substrate transportation

    No full text
    Med ett vĂ€xande energibehov i vĂ€rlden, sinande energikĂ€llor i form av fossila brĂ€nslen och en miljö som vi under en lĂ€ngre tid har förorenat behövs det nya energiformer som Ă€r mer lĂ„ngsiktiga och framförallt miljövĂ€nliga. En sĂ„dan energiform Ă€r biogas. Biogasprocessen Ă€r dock inte helt optimerad. Flera av de substrat som anvĂ€nds idag tar lĂ„ng tid att röta och bryts bara ner till viss del i processen eller innehĂ„ller onödigt mycket vatten, vilket ger höga transportkostnader. Med syfte att göra biogasprocessen mer ekonomisk lönsam utvĂ€rderas i denna rapport pĂ„ uppdrag frĂ„n E.ON nĂ„gra olika förbehandlingstekniker: Ångexplosion, extrusion, avvattning och kalkbehandling. Förhoppningen Ă€r att dessa ska kunna öka lönsamheten för storskalig biogasproduktion och kanske möjliggöra biogasproduktion frĂ„n tidigare obrukbara substrat som fjĂ€drar och halm.  För att jĂ€mföra och utvĂ€rdera förbehandlingsteknikerna utfördes batchrötningsförsök i 330 ml flaskor med obehandlade och förbehandlade substrat. De flesta förbehandle substraten gav snabbare nedbrytning och nĂ„gra gav Ă€ven högre metanutbyte Ă€n de obehandlade. FjĂ€drar och halm, som frĂ„n början hade ett lĂ„gt utbyte, pĂ„verkades mest av förbehandlingen. Ångexploderade fjĂ€drar gav efter 44 dagars rötning 141% högre metanutbyte och extruderad halm gav 22% högre metanutbyte Ă€n obehandlad.  För ekonomiska berĂ€kningarna anvĂ€ndes en referensanlĂ€ggning med en förutbestĂ€md substratmix: 12500 ton majs och 11500 ton hĂ€stgödsel. Att tillgĂ„ för referensanlĂ€ggningen finns dessutom fjĂ€drar. Cambis THP-anlĂ€ggning för Ă„ngexplosion visade sig vara alldeles för dyr för referensanlĂ€ggningen. En THP-anlĂ€ggning krĂ€ver en större biogasanlĂ€ggning dĂ€r en större mĂ€ngd svĂ„rnedbrytbara substrat rötas för att bli lönsam. En extruder skulle kunna vara lönsam för för refernsanlĂ€ggningen om hĂ€stgödseln som de har tillgĂ„ng till innehĂ„ller halm som strömaterial. En investering i en extruder bara för att förbehandla majsensilage visade sig inte lönsam.  Avvattning av gödsel gav signifikant lĂ€gre utbyte av biogas per torrvikt men signifikant högre utbyte per vĂ„tvikt. Avvattningsutrustningen frĂ„n Splitvision, som testades, var för dyr för att bli lönsam. Först nĂ€r gĂ„rden lĂ„g 4 mil frĂ„n biogasanlĂ€ggningen blev det billigare att avvattna gödsel och transportera den jĂ€mfört med att transportera den obehandlad. Andra avvattningsutrustningar i studien var billigare i drift sĂ„ det finns möjligheter att tekniken kan bli lönsam med nĂ„gon av dessa.The world needs new energy sources that are durable for long time and which not affect the environment negatively. Biogas fulfills those demands. The biogas process is however not completely optimized. Several of the substrates used today for biogas production are slowly degraded and only partly digested in the process. Other substrates consist of unnecessarily much water which makes transportation costly. To optimize the process and make the biogas process more profitable, several pretreatment techniques are evaluated by direction of E.ON in this report: steam explosion, extrusion, lime treatment and dewatering. The hope is that one of those could increase the profitability and hopefully also enable substrates that not are working today like feathers and straw. To compare and evaluate the different pretreatment batch digester, experiments were carried out during 31-44 days for untreated and pretreated substrates. Most pretreated substrates were faster degraded than untreated and some also gave a higher methane yield. Chicken waste feathers and wheat straw, which had low methane yields untreated, were affected most by pretreatment. Steam exploded feathers gave after 44 days of digestion 141% higher methane yield and extruded straw gave 22% higher methane yield than untreated samples of the same substrate. A reference plant with a substrate mixture of 12500 tonnes of maize silage and 11500 tons of horsemanure annually was used to make economical calculations. Additionally, chicken waste feathers waste could be included. Obtainable for the reference plant were also chicken waste feathers. Steam explosion appeared to be too expensive for a plant in the size of the reference plant. Its large capacity could probably make it profitable for a much larger biogas plant running on a lot of hard digestible substrates. An extruder could be a profitable investment for the reference plant if the plant gets horse manure with straw as bedding material. To just use the extruder to pretreat maize silage could not make the investment profitable. Dewatering of manure gave significantly lower methane yield per dry weight but significantly higher methane yield per wet weight. The increase in methane yield per wet weight makes the substrate better for transportation. The dewatering equipment from Splitvision tried in this study had too high operational costs and was too expensive to make dewatering particularly profitable. Only when the farm was situated farther away than 40km from the biogas plant it was cheaper to dewater the manure before transport than to transport the manure without any pretreatment. Other dewatering equipments evaluated in this study had much lower operational costs and among those an equipment that makes dewatering profitable might therefore be found. The world needs new energy sources that are durable for long time and which not affect the environment negatively. Biogas fulfills those demands. The biogas process is however not completely optimized. Several of the substrates used today for biogas production are slowly degraded and only partly digested in the process. Other substrates consist of unnecessarily much water which makes transportation costly. To optimize the process and make the biogas process more profitable, several pretreatment techniques are evaluated by direction of E.ON in this report: steam explosion, extrusion, lime treatment and dewatering. The hope is that one of those could increase the profitability and hopefully also enable substrates that not are working today like feathers and straw. To compare and evaluate the different pretreatment batch digester, experiments were carried out during 31-44 days for untreated and pretreated substrates. Most pretreated substrates were faster degraded than untreated and some also gave a higher methane yield. Chicken waste feathers and wheat straw, which had low methane yields untreated, were affected most by pretreatment. Steam exploded feathers gave after 44 days of digestion 141% higher methane yield and extruded straw gave 22% higher methane yield than untreated samples of the same substrate. A reference plant with a substrate mixture of 12500 tonnes of maize silage and 11500 tons of horsemanure annually was used to make economical calculations. Additionally, chicken waste feathers waste could be included. Obtainable for the reference plant were also chicken waste feathers. Steam explosion appeared to be too expensive for a plant in the size of the reference plant. Its large capacity could probably make it profitable for a much larger biogas plant running on a lot of hard digestible substrates. An extruder could be a profitable investment for the reference plant if the plant gets horse manure with straw as bedding material. To just use the extruder to pretreat maize silage could not make the investment profitable. Dewatering of manure gave significantly lower methane yield per dry weight but significantly higher methane yield per wet weight. The increase in methane yield per wet weight makes the substrate better for transportation. The dewatering equipment from Splitvision tried in this study had too high operational costs and was too expensive to make dewatering particularly profitable. Only when the farm was situated farther away than 40km from the biogas plant it was cheaper to dewater the manure before transport than to transport the manure without any pretreatment. Other dewatering equipments evaluated in this study had much lower operational costs and among those an equipment that makes dewatering profitable might therefore be found

    Pretreatment technologies to increase the methane yields by anaerobic digestion in relation to cost efficiency of substrate transportation

    No full text
    Med ett vĂ€xande energibehov i vĂ€rlden, sinande energikĂ€llor i form av fossila brĂ€nslen och en miljö som vi under en lĂ€ngre tid har förorenat behövs det nya energiformer som Ă€r mer lĂ„ngsiktiga och framförallt miljövĂ€nliga. En sĂ„dan energiform Ă€r biogas. Biogasprocessen Ă€r dock inte helt optimerad. Flera av de substrat som anvĂ€nds idag tar lĂ„ng tid att röta och bryts bara ner till viss del i processen eller innehĂ„ller onödigt mycket vatten, vilket ger höga transportkostnader. Med syfte att göra biogasprocessen mer ekonomisk lönsam utvĂ€rderas i denna rapport pĂ„ uppdrag frĂ„n E.ON nĂ„gra olika förbehandlingstekniker: Ångexplosion, extrusion, avvattning och kalkbehandling. Förhoppningen Ă€r att dessa ska kunna öka lönsamheten för storskalig biogasproduktion och kanske möjliggöra biogasproduktion frĂ„n tidigare obrukbara substrat som fjĂ€drar och halm.  För att jĂ€mföra och utvĂ€rdera förbehandlingsteknikerna utfördes batchrötningsförsök i 330 ml flaskor med obehandlade och förbehandlade substrat. De flesta förbehandle substraten gav snabbare nedbrytning och nĂ„gra gav Ă€ven högre metanutbyte Ă€n de obehandlade. FjĂ€drar och halm, som frĂ„n början hade ett lĂ„gt utbyte, pĂ„verkades mest av förbehandlingen. Ångexploderade fjĂ€drar gav efter 44 dagars rötning 141% högre metanutbyte och extruderad halm gav 22% högre metanutbyte Ă€n obehandlad.  För ekonomiska berĂ€kningarna anvĂ€ndes en referensanlĂ€ggning med en förutbestĂ€md substratmix: 12500 ton majs och 11500 ton hĂ€stgödsel. Att tillgĂ„ för referensanlĂ€ggningen finns dessutom fjĂ€drar. Cambis THP-anlĂ€ggning för Ă„ngexplosion visade sig vara alldeles för dyr för referensanlĂ€ggningen. En THP-anlĂ€ggning krĂ€ver en större biogasanlĂ€ggning dĂ€r en större mĂ€ngd svĂ„rnedbrytbara substrat rötas för att bli lönsam. En extruder skulle kunna vara lönsam för för refernsanlĂ€ggningen om hĂ€stgödseln som de har tillgĂ„ng till innehĂ„ller halm som strömaterial. En investering i en extruder bara för att förbehandla majsensilage visade sig inte lönsam.  Avvattning av gödsel gav signifikant lĂ€gre utbyte av biogas per torrvikt men signifikant högre utbyte per vĂ„tvikt. Avvattningsutrustningen frĂ„n Splitvision, som testades, var för dyr för att bli lönsam. Först nĂ€r gĂ„rden lĂ„g 4 mil frĂ„n biogasanlĂ€ggningen blev det billigare att avvattna gödsel och transportera den jĂ€mfört med att transportera den obehandlad. Andra avvattningsutrustningar i studien var billigare i drift sĂ„ det finns möjligheter att tekniken kan bli lönsam med nĂ„gon av dessa.The world needs new energy sources that are durable for long time and which not affect the environment negatively. Biogas fulfills those demands. The biogas process is however not completely optimized. Several of the substrates used today for biogas production are slowly degraded and only partly digested in the process. Other substrates consist of unnecessarily much water which makes transportation costly. To optimize the process and make the biogas process more profitable, several pretreatment techniques are evaluated by direction of E.ON in this report: steam explosion, extrusion, lime treatment and dewatering. The hope is that one of those could increase the profitability and hopefully also enable substrates that not are working today like feathers and straw. To compare and evaluate the different pretreatment batch digester, experiments were carried out during 31-44 days for untreated and pretreated substrates. Most pretreated substrates were faster degraded than untreated and some also gave a higher methane yield. Chicken waste feathers and wheat straw, which had low methane yields untreated, were affected most by pretreatment. Steam exploded feathers gave after 44 days of digestion 141% higher methane yield and extruded straw gave 22% higher methane yield than untreated samples of the same substrate. A reference plant with a substrate mixture of 12500 tonnes of maize silage and 11500 tons of horsemanure annually was used to make economical calculations. Additionally, chicken waste feathers waste could be included. Obtainable for the reference plant were also chicken waste feathers. Steam explosion appeared to be too expensive for a plant in the size of the reference plant. Its large capacity could probably make it profitable for a much larger biogas plant running on a lot of hard digestible substrates. An extruder could be a profitable investment for the reference plant if the plant gets horse manure with straw as bedding material. To just use the extruder to pretreat maize silage could not make the investment profitable. Dewatering of manure gave significantly lower methane yield per dry weight but significantly higher methane yield per wet weight. The increase in methane yield per wet weight makes the substrate better for transportation. The dewatering equipment from Splitvision tried in this study had too high operational costs and was too expensive to make dewatering particularly profitable. Only when the farm was situated farther away than 40km from the biogas plant it was cheaper to dewater the manure before transport than to transport the manure without any pretreatment. Other dewatering equipments evaluated in this study had much lower operational costs and among those an equipment that makes dewatering profitable might therefore be found. The world needs new energy sources that are durable for long time and which not affect the environment negatively. Biogas fulfills those demands. The biogas process is however not completely optimized. Several of the substrates used today for biogas production are slowly degraded and only partly digested in the process. Other substrates consist of unnecessarily much water which makes transportation costly. To optimize the process and make the biogas process more profitable, several pretreatment techniques are evaluated by direction of E.ON in this report: steam explosion, extrusion, lime treatment and dewatering. The hope is that one of those could increase the profitability and hopefully also enable substrates that not are working today like feathers and straw. To compare and evaluate the different pretreatment batch digester, experiments were carried out during 31-44 days for untreated and pretreated substrates. Most pretreated substrates were faster degraded than untreated and some also gave a higher methane yield. Chicken waste feathers and wheat straw, which had low methane yields untreated, were affected most by pretreatment. Steam exploded feathers gave after 44 days of digestion 141% higher methane yield and extruded straw gave 22% higher methane yield than untreated samples of the same substrate. A reference plant with a substrate mixture of 12500 tonnes of maize silage and 11500 tons of horsemanure annually was used to make economical calculations. Additionally, chicken waste feathers waste could be included. Obtainable for the reference plant were also chicken waste feathers. Steam explosion appeared to be too expensive for a plant in the size of the reference plant. Its large capacity could probably make it profitable for a much larger biogas plant running on a lot of hard digestible substrates. An extruder could be a profitable investment for the reference plant if the plant gets horse manure with straw as bedding material. To just use the extruder to pretreat maize silage could not make the investment profitable. Dewatering of manure gave significantly lower methane yield per dry weight but significantly higher methane yield per wet weight. The increase in methane yield per wet weight makes the substrate better for transportation. The dewatering equipment from Splitvision tried in this study had too high operational costs and was too expensive to make dewatering particularly profitable. Only when the farm was situated farther away than 40km from the biogas plant it was cheaper to dewater the manure before transport than to transport the manure without any pretreatment. Other dewatering equipments evaluated in this study had much lower operational costs and among those an equipment that makes dewatering profitable might therefore be found

    Biogasproduktion inom svensk pappers- och massaporduktion : Syntes av möjligheter och begrÀnsningar samt teknisk utvÀrdering : Bilaga 2 Etablering/effektivisering av biogasproduktion inom svensk pappers- och massaindustri

    No full text
    Linköpings Universitet har tillsammans med Pöyry och Scandinavian Biogas Fuels drivit projektet ”Etablering/effektivisering av  biogasproduktion inom svensk pappers- och massaproduktion”. Potentialen hos det organiska materialet i avloppsvatten frĂ„n svensk pappers- och massaindustri (PMI) till biogasproduktion skattades vid projektstart till 100 milj. Nm3 metan per Ă„r (1 TWh). Denna rapport Ă€r en syntes av resultaten frĂ„n projektet med syfte att ge visa hur de genererade resultaten kan omsĂ€ttas i teknisk praktik med tillhörande ekonomiska insatser. Syftet Ă€r att ge underlag och stöd till PMI-branschen och externa intressenter, som övervĂ€ger att implementera biogasproduktion inom PMI. Substraten för biogasproduktion som Ă„terfinns i pappers- och massaindustrins avloppsvatten och slam kĂ€nnetecknas av stora volymer med lĂ„ga COD-halter. Detta krĂ€ver rötningstekniker, som tillĂ„ter mycket korta uppehĂ„llstider jĂ€mfört med mer traditionellt utformade biogasanlĂ€ggningar för att inte tankstorleken ska bli för stor. TvĂ„ tekniker, som utvecklats inom projektet, klarar detta: EGSB (expanded granular sludge bed) och CSTR (completely stirred tank reactor) med slamĂ„terföring. Dessa tekniker har dĂ€rför utvĂ€rderats för tre olika typbruk, ett CTMP-bruk, ett TMP-bruk och ett sulfatmassabruk. Resultaten frĂ„n dessa experimentella studier Ă€r utgĂ„ngspunkten för i utvĂ€rderingen i föreliggande rapport. För varje processkoncept har en grov kostnadsuppskattning (±20 %) gjorts för den investering som krĂ€vs för biogasproduktion. En EGSB pĂ„ ett TMP-bruk med ett totalavlopp pĂ„ 1500 m3/h, dĂ€r hela blekeriavloppet frĂ„n peroxidblekningen och en del av det övriga avloppet behandlas i en 4000 m3 reaktor förvĂ€ntas ge 2,5 milj Nm3 metan/Ă„r. Investeringskostnaden för anlĂ€ggningen uppskattas till 75 milj. SEK (±20 %). En EGSB pĂ„ ett CTMP-bruk med ett totalavlopp pĂ„ 170 m3/h dĂ€r hela avloppet behandlas i en 3000 m3 reaktor förvĂ€ntas ge 1,8 milj Nm3 metan/Ă„r. Investeringskostnaden för anlĂ€ggningen uppskattas till 64 milj. SEK (±20%). En CSTR med slamĂ„terföring som körs pĂ„ bioslam frĂ„n ett sulfatmassabruk dĂ€r ett bioslamflöde pĂ„ 46 m3/h behandlas i en 4000 m3 reaktor förvĂ€ntas ge 1,0 milj Nm3 metan/Ă„r. I denna design Ă€r strategin för den aeroba bioreningen Ă€ndrad för att producera ett bioslam optimerat för att ge högsta möjliga biogaspotential. Detta innebĂ€r produktion av större mĂ€ngd slam, som i största mĂ„n kan rötas till metan, dvs mĂ€ngd metan per mĂ€ngd rötat organiskt material samtidigt som COD-reduktionen i vattenreningen bibehĂ„lls. Investeringskostnaden för anlĂ€ggningen uppskattas till 32 milj. SEK (±20%). Baserat pĂ„ de COD-kvantiteter som nĂ„r de luftade dammarna inom PMIs vattenreningssystem förbrukas Ă„rligen ca 0,8 TWh el. Införande av biogasproduktion i massaindustrins spillvattenrening skulle reducera mĂ€ngden COD med mellan 30-50%, vilket fĂ„r till följd att den Ă„rliga elförbrukningen i samband med den aeroba reningen gĂ„r ner med ca 0,2-0,4 TWh. Detta innebĂ€r alltsĂ„ ett energitillskott av 0,9 – 1,1 TWh givet att hela den tillgĂ€ngliga biogaspotentialen skulle byggas ut. Till detta kommer eventuella vinster relaterade till slamhanteringen

    Methane potentials of the Swedish pulp and paper industry - A screening of wastewater effluents

    No full text
    With the final aim of reducing the energy consumption and increase the methane production at Swedish pulp and paper mills, the methane potential of 62 wastewater effluents from 10 processes at seven pulp and/or paper mills (A-G) was determined in anaerobic batch digestion assays. This mapping is a first step towards an energy efficient and more sustainable utilization of the effluents by anaerobic digestion, and will be followed up by tests in lab-scale and pilot-scale reactors. Five of the mills produce kraft pulp (KP), one thermo-mechanical pulp (TMP), two chemical thermo-mechanical pulp (CTMP) and two neutral sulfite semi-chemical (NSSC) pulp. Both elementary and total chlorine free (ECF and TCF, respectively) bleaching processes were included. The effluents included material from wood rooms, cooking and oxygen delignification, bleaching (often both acid- and alkali effluents), drying and paper/board machinery as well as total effluents before and after sedimentation. The results from the screening showed a large variation in methane yields (percent of theoretical methane potential assuming 940 NmL CH4 per g TOC) among the effluents. For the KP-mills, methane yields above 50% were obtained for the cooking effluents from mills D and F, paper machine wastewater from mill D, condensate streams from mills B, E and F and the composite pre-sedimentation effluent from mill D. The acidic ECF-effluents were shown to be the most toxic to the AD-flora and also seemed to have a negative effect on the yields of composite effluents downstream while three of the alkaline ECF-bleaching effluents gave positive methane yields. ECF bleaching streams gave higher methane yields when hardwood was processed. All TCF-bleaching effluents at the KP mills gave similar degradation patterns with final yields of 10-15% of the theoretical methane potential for four of the five effluents. The composite effluents from the two NSSC-processes gave methane yields of 60% of the theoretical potential. The TMP mill (A) gave the best average yield with all six effluents ranging 40-65% of the theoretical potential. The three samples from the CTMP process at mill B showed potentials around 40% while three of the six effluents at mill G (CTMP) yielded 45-50%
    corecore