40 research outputs found

    UV albedo of arctic snow in spring

    No full text
    International audienceThe relevance of snow for climate studies is based on its physical properties, such as high surface reflectivity. Surface ultraviolet (UV) albedo is an essential parameter for various applications based on radiative transfer modeling. Here, new continuous measurements of the local UV albedo of natural Arctic snow were made at Sodankylä (67.37° N, 26.63° E, 179 m a.s.l.) during the spring of 2007. The data were logged at 1-min intervals. The accumulation of snow was up to 68 cm. The surface layer thickness varied from 0.5 to 35 cm with the snow grain size between 0.2 and 2.5 mm. The midday erythemally weighted UV albedo ranged from 0.6 to 0.8 in the accumulation period and 0.5?0.7 during melting. During the snow melt period, under cases of an almost clear sky and variable cloudiness, an unexpected diurnal decrease of 0.05 in albedo soon after midday, and recovery thereafter, was detected. This diurnal decrease in albedo was found to be asymmetric with respect to solar midday, thus indicating a change in the properties of the snow. Independent UV albedo results with two different types of instruments confirm these findings. The measured temperature of the snow surface was below 0°C on the following mornings. Hence, the reversible diurnal change, evident for ~1?2 h, could be explained by the daily metamorphosis of the surface of the snowpack, in which the temperature of the surface increases, melting some of the snow to liquid water, after which the surface freezes again

    Diurnal variations in the UV albedo of arctic snow

    Get PDF
    The relevance of snow for climate studies is based on its physical properties, such as high surface reflectivity. Surface ultraviolet (UV) albedo is an essential parameter for various applications based on radiative transfer modeling. Here, new continuous measurements of the local UV albedo of natural Arctic snow were made at Sodankylä (67°22'N, 26°39'E, 179 m a.s.l.) during the spring of 2007. The data were logged at 1-min intervals. The accumulation of snow was up to 68 cm. The surface layer thickness varied from 0.5 to 35 cm with the snow grain size between 0.2 and 2.5 mm. The midday erythemally weighted UV albedo ranged from 0.6 to 0.8 in the accumulation period, and from 0.5 to 0.7 during melting. During the snow melt period, under cases of an almost clear sky and variable cloudiness, an unexpected diurnal decrease of 0.05 in albedo soon after midday, and recovery thereafter, was detected. This diurnal decrease in albedo was found to be asymmetric with respect to solar midday, thus indicating a change in the properties of the snow. Independent UV albedo results with two different types of instruments confirm these findings. The measured temperature of the snow surface was below 0°C on the following mornings. Hence, the reversible diurnal change, evident for ~1–2 h, could be explained by the daily metamorphosis of the surface of the snowpack, in which the temperature of the surface increases, melting some of the snow to liquid water, after which the surface freezes again

    Intercomparison of erythemal broadband radiometers calibrated by seven UV calibration facilities in Europe and the USA

    No full text
    International audienceA bi-lateral intercomparison of erythemal broadband radiometers was performed between seven UV calibration facilities. The owners calibrations were compared relative to the characterisation and calibration performed at PMOD/WRC in Davos, Switzerland. The calibration consisted in the determination of the spectral and angular response of the radiometer, followed by an absolute calibration performed outdoors relative to a spectroradiometer which provided the absolute reference. The characterization of the detectors in the respective laboratories are in good agreement: The determination of the angular responses have deviations below ±4% and the spectral responses agree within ±20%. A "blind" intercomparison of the erythemally weighted irradiances derived by the respective institutes and PMOD/WRC showed consistent measurements to within ±2% for the majority of institutes. One institute showed slightly larger deviation of 10%. The differences found between the different instrument calibrations are all within the combined uncertainty of the calibration

    Radiometria

    No full text

    UV-säteilyn altistumisrajat

    No full text

    Lasersäteilylle altistuminen

    No full text

    Laserturvallisuus

    No full text

    Altistuminen UV-säteilylle

    No full text
    corecore