24 research outputs found
Adaptive Exponential Synchronization of Coupled Complex Networks on General Graphs
We investigate the synchronization in complex dynamical networks, where the coupling configuration corresponds to a weighted graph. An adaptive synchronization method on general coupling configuration graphs is given. The networks may synchronize at an arbitrarily given exponential rate by enhancing the updated law of the variable coupling strength and achieve synchronization more quickly by adding edges to original graphs. Finally, numerical simulations are provided to illustrate the effectiveness of our theoretical results
Smart Rock Technology for Real-Time Monitoring of Bridge Scour and Riprap Effectiveness -- Design Guidelines and Visualization Tools
This study aims to further develop and demonstrate the recently-proposed smart rock technology for scour depth and protection effectiveness monitoring. A smart rock is one or two stacked magnets encased in a concrete sphere with a specially-designed rotational mechanism. Design guidelines, rotational mechanisms, remote measurement tools and localization algorithms of smart rocks were developed and validated at three bridge sites. The effect of steel reinforcement in bridge piers/deck on the orientation of gravity-controlled magnets was negligible. The localization accuracy with a single smart rock met a general requirement of less than 0.5 m in engineering applications. The spherical smart rock placed directly on the riverbed of the Roubidoux Creek successfully demonstrated its movement to the bottom of scour hole during the December 27, 2015, flood. Those deployed in the Waddell Creek and the Gasconade River were washed away and thus replaced with smart rocks embedded in deposits such that their top is in flush with the riverbed for improved stability under water current. For rip-rap effectiveness monitoring, polyhedral smart rocks are recommended to increase their interlock with other natural rocks
Spectral Radius and Hamiltonicity of Graphs
In this paper, we study the Hamiltonicity of graphs with large minimum degree. Firstly, we present some conditions for a simple graph to be Hamilton-connected and traceable from every vertex in terms of the spectral radius of the graph or its complement, respectively. Secondly, we give the conditions for a nearly balanced bipartite graph to be traceable in terms of spectral radius, signless Laplacian spectral radius of the graph or its quasi-complement, respectively
Spectral Radius and Hamiltonicity of Graphs
In this paper, we study the Hamiltonicity of graphs with large minimum degree. Firstly, we present some conditions for a simple graph to be Hamilton-connected and traceable from every vertex in terms of the spectral radius of the graph or its complement, respectively. Secondly, we give the conditions for a nearly balanced bipartite graph to be traceable in terms of spectral radius, signless Laplacian spectral radius of the graph or its quasi-complement, respectively
Field Application of Magnet-Based Smart Rock for Bridge Scour Monitoring
In this study, a smart rock, which is a magnet embedded in a concrete ball and whose direction is always pointing downwards, is proposed to monitor bridge scour depth. Based on the theory of magnetic field, the distribution of the magnet-induced magnetic field (MMF) induced by the smart rock was derived. An algorithm was developed to localize the position of the smart rock. Field tests were conducted at a bridge pier at three different times. Both the intensities of the ambient magnetic field (AMF) and the total magnetic field (TMF) were measured with a magnetometer. Results showed that the presence of steel reinforcement or steel girders in the bridge changed the distribution of the geomagnetic field. The algorithm successfully localized the position of the smart rock with an error ranging from 0.26 to 0.33 m, which satisfied the requirement for engineering applications. The effective monitoring range depends on the variation of the AMF, and the maximum monitoring depth ranged from 11.5 to 8.5 m as the standard deviation of the AMF increased from 32.3 to 80.75 nT
Research on the Processing Method of Acoustic Focusing Cavities Based on the Temperature Gradient
Aiming at the key factors affecting the quality and efficiency of high-energy in-beam machining, this paper studies the broadband acoustic focusing effect based on a discrete temperature gradient. Firstly, the basic theory and mathematical model of temperature-controlled acoustic focusing are established. Secondly, the acoustic focusing effect is achieved by combining the design of metasurfaces and discrete temperature. Then, the acoustic pressure and intensity distribution of acoustic focusing under a discrete temperature gradient are simulated and experimentally studied. The results show that the phase delay of transmission and reflection of acoustic wave covers the 2π interval by changing the temperature in different transmission units, which provides a theoretical basis for the processing of the acoustic focusing cavity