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We investigate the synchronization in complex dynamical networks, where the coupling configuration corresponds to a weighted
graph. An adaptive synchronization method on general coupling configuration graphs is given. The networks may synchronize at
an arbitrarily given exponential rate by enhancing the updated law of the variable coupling strength and achieve synchronization
more quickly by adding edges to original graphs. Finally, numerical simulations are provided to illustrate the effectiveness of our
theoretical results.

1. Introduction

In general, complex networks consist of a large number of
nodes and links among them, in which a node is a fundamen-
tal cell with specific activity, hence, complex networks and
graphs closely contact each other. The dynamics on complex
networks is one on graphs, though the graphs may have
different characteristic, for example, classical random graph
model [1], small-world model [2–4], scale-free model [5], or
others that are closely related to natural structure.

Synchronization of coupled complex dynamical networks
is a universal phenomenon in various fields of science and
society. All kinds of synchronization, including adaptive
synchronization, global synchronization, antisynchroniza-
tion, phase synchronization, projection synchronization, and
generalized synchronization have been studied [6–14], in par-
ticular on the synchronization of an array of linearly coupled
identical systems [15–18]. Researches [15, 19] imply that the
structural properties of a network must have inevitable effect
on the ability and speed of synchronization, but such work
still does not see more. In addition, as pointed in [18], the
coupling strength may be self-adaptive due to the sponta-
neousness of updated law, not be calculated numerically in
many other works.

In the paper [18], an adaptive synchronization method is
introduced, and the networks can synchronize by enhancing
the coupling strength automatically under a simple updated

law. However, their work is limited to tree-like networks and
cannot be applied to general networks. In fact, a tree is a graph
without cycles; in this paper, we try to extend the work in [18]
to general networks or graphs. We find that their method is
in fact effective to general graphs by a rigorous proof, and the
networks can also achieve synchronization at an arbitrarily
given exponential rate by increasing coupling strength. Based
on the knowledge of spectral graph theory, networks can
synchronizemore quickly by increasing the algebraic connec-
tivity of the graphs, which can be realized by adding edges to
original graphs. Finally, numerical simulations are provided
to illustrate the effectiveness of theoretical results.

2. Preliminaries

In this section, we now introduce some notations and prelim-
inaries.

Consider the complex dynamical network consisting
of 𝑁 linearly and diffusively coupled identical nodes with
full diagonal coupling, and each node is an 𝑛-dimensional
dynamical oscillator which may be chaotic. The state equa-
tions of the network are

𝑥̇
𝑖
= 𝑓 (𝑥

𝑖
) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
, 𝑖 = 1, 2, . . . , 𝑁, (1)

where 𝑥
𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
)
𝑇
∈ R𝑛 is a state vector of node 𝑖,

𝑓(𝑥
𝑖
) = (𝑓

1
(𝑥
𝑖
), 𝑓
2
(𝑥
𝑖
), . . . , 𝑓

𝑛
(𝑥
𝑖
))
𝑇
: R𝑛 → R𝑛 is a given
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nonlinear vector valued function describing the dynam-
ics of the nodes, 𝑐 > 0 represents coupling strength, and
the inner coupling link matrix is a diagonal matrix Γ =

diag {𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
} with 𝑟

𝑖
> 0. The coupling configuration

matrix 𝐴 = (𝑎
𝑖𝑗
)
𝑁×𝑁

is a zero row sums matrix with non-
negative off-diagonal entries, representing the topological
structure of the network.

There is a weighted graph corresponding to the coupling
configuration matrix 𝐴, called the coupling configuration
graph, defined as a graph 𝐺 on vertices 1, 2, . . . , 𝑁 which
contains an edge 𝑖𝑗 (𝑖 ̸= 𝑗)with weight 𝑎

𝑖𝑗
if and only if 𝑎

𝑖𝑗
> 0.

Giving an arbitrary orientation of the edges of 𝐺, so that
each edge has a head and a tail, and a labeling of edges as
𝑒
1
, 𝑒
2
, . . . , 𝑒

𝐸
, where 𝐸 denotes the number of edges of 𝐺. We

obtain an edge-vertex incidencematrix of𝐺, denoted as𝑀 :=

𝑀(𝐴) = (𝑚
𝑖𝑗
)
𝐸×𝑁

, which is defined as 𝑚
𝑖𝑗
= √𝑎𝑖𝑗 (resp.,

𝑚
𝑖𝑗
= −√𝑎𝑖𝑗) if the the edge 𝑒𝑖 has the vertex 𝑗 as a head (resp.,

a tail), and 𝑚
𝑖𝑗
= 0 otherwise. The Laplacian matrix of 𝐺 is

defined as 𝐿 = 𝑀
𝑇
𝑀 = 𝐷 − 𝐵, where𝐷 is a diagonal matrix,

and its 𝑖th diagonal entry of which is exactly the degree of the
vertex 𝑖, that is, 𝑑

𝑖
= ∑
𝑗∈𝑁(𝑖)

𝑎
𝑖𝑗
, where𝑁(𝑖) is the set of neigh-

bors of 𝑖 in the graph 𝐺 (or the vertices joining 𝑖 by edges),
and 𝐵 = (𝑏

𝑖𝑗
) is a weighted adjacency matrix of 𝐺 such that

𝑏
𝑖𝑗
= 𝑎
𝑖𝑗
if 𝑖𝑗 is an edge of 𝐺 and 𝑏

𝑖𝑗
= 0 otherwise. One can

find that 𝐿 = −𝐴 and is symmetric and positive semidefinite,
so its eigenvalues can be arranged as

0 = 𝜆
0
≤ 𝜆
1
≤ 𝜆
2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑁−1
, (2)

where 𝜆
0
= 0 as 𝐿 has zero row sums, and 𝜆

1
> 0 if and only

if 𝐺 is connected and is called the algebraic connectivity of 𝐺
by Fiedler [20] in the case of 𝐺 is simple (i.e., all edges have
weight 1). If 𝐺 is connected, the corresponding eigenvector of
the eigenvalue 0 is an all one vector (up to a scalar multiple),
denoted by 1. One can refer to Chung [21] andMerris [22] for
the details of Laplacian matrices of graphs.

If we denote 𝑥 = (𝑥
𝑇

1
, 𝑥
𝑇

2
, . . . , 𝑥

𝑇

𝑁
)
𝑇,𝐹(𝑥) = (𝑓

𝑇
(𝑥
1
),

𝑓
𝑇
(𝑥
2
), . . . , 𝑓

𝑇
(𝑥
𝑁
))
𝑇 and substitute −𝐿 for 𝐴, (1) is trans-

formed as

𝑥̇ = 𝐹 (𝑥) − 𝑐𝐿 ⊗ Γ𝑥. (3)

Taking the transformation 𝑦 = 𝑥𝑒
𝑎𝑡
(𝑎 > 0), (3) is written as

̇𝑦 = 𝑒
𝑎𝑡
𝐹 (𝑒
−𝑎𝑡
𝑦) − (𝑐𝐿 ⊗ Γ − 𝑎𝐼

𝑁𝑛
) 𝑦, (4)

where 𝐼
𝑁𝑛

= 𝐼
𝑁
⊗ 𝐼
𝑛
, and 𝐼

𝑚
denotes an identity matrix of

order𝑚.
In this paper, we adopt the 𝑙

2
-norm for vectors and the

induced spectral norm for matrices. We always suppose that
the function 𝐹 in (3) is Lipschitz continuous, or equivalently
𝑓 in (1) is Lipschitz continuous, that is, there exists a constant
𝑙 > 0 such that for any 𝑥, 𝑦 ∈ 𝑅

𝑛,

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝑙 ⋅

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 . (5)

Denote by M = 𝑀 ⊗ 𝐼
𝑛
, one can obtain the following

lemma.

Lemma 1 (see [15]). Suppose that the coupling configuration
graph corresponding to 𝐴 = −𝐿 is connected. Then, the
dynamical networks (4) achieve synchronization if and only if
lim
𝑡→∞

‖ M𝑦 ‖= 0.

3. Main Results

If the network (4) achieves synchronization, surely the net-
work (3) or (1) achieves synchronization with exponential
rate 𝑎. So, we directly discuss (4), themain result of this paper
is stated as follows.

Theorem 2. Suppose that 𝐹 is Lipschitz continuous, and the
coupling configuration graph corresponding to 𝐴 = −𝐿 is con-
nected. Then, the network (4) achieves synchronization, and in
particular the network (1) achieves exponential synchroniza-
tion with rate 𝑎, when the coupling strength 𝑐 is adapted duly
according to the following updated law:

̇𝑐 = 𝑘𝑦
𝑇
(𝑡) (𝐿
2
⊗ Γ) 𝑦 (𝑡) , (6)

where 𝑘 > 0 is an arbitrary constant.

Proof. Construct a Lyapunov function

𝑉 (𝑡) =
1

2

󵄩󵄩󵄩󵄩M𝑦 (𝑡)
󵄩󵄩󵄩󵄩

2
+

1

2𝑘
(𝑐 − ℎ)

2
, (7)

where ℎ is a sufficiently large constant.
Noting that M𝑇M = 𝐿 ⊗ 𝐼

𝑛
, and substituting (6) for ̇𝑐,

we get the derivative of 𝑉(𝑡) along the trajectories of (4) as
follows:

𝑉̇ = (M𝑦)
𝑇
(M ̇𝑦) +

1

𝑘
(𝑐 − ℎ) ̇𝑐

= (M𝑦)
𝑇M [𝑒

𝑎𝑡
𝐹 (𝑒
−𝑎𝑡
𝑦) − (𝑐𝐿 ⊗ Γ − 𝑎𝐼

𝑁𝑛
) 𝑦]

+ (𝑐 − ℎ) 𝑦
𝑇
(𝐿
2
⊗ Γ) 𝑦

= 𝑒
𝑎𝑡
(M𝑦)
𝑇M𝐹 (𝑒

−𝑎𝑡
𝑦) − ℎ𝑦

𝑇
(𝐿
2
⊗ Γ) 𝑦 + 𝑎𝑦

𝑇
(𝐿 ⊗ 𝐼

𝑛
) 𝑦

− 𝑐𝑦
𝑇M𝑇M (𝐿 ⊗ Γ) 𝑦 + 𝑐𝑦

𝑇
(𝐿
2
⊗ Γ) 𝑦.

(8)

Noting that

M𝑇M (𝐿 ⊗ Γ) = (𝐿 ⊗ 𝐼
𝑛
) (𝐿 ⊗ Γ) = 𝐿

2
⊗ Γ, (9)

we have

𝑉̇ = 𝑒
𝑎𝑡
(M𝑦)
𝑇M𝐹 (𝑒

−𝑎𝑡
𝑦) − ℎ𝑦

𝑇
(𝐿
2
⊗ Γ) 𝑦 + 𝑎𝑦

𝑇
(𝐿 ⊗ 𝐼

𝑛
) 𝑦.

(10)

Let𝐺 be the coupling configuration graph corresponding
to 𝐴 = −𝐿. Let 𝐺⃗ be the directed graph after an arbitrary
orientation of the edges of 𝐺, and let E(𝐺⃗) be the edge set
of 𝐺⃗. An oriented edge in E(𝐺⃗) is denoted by 𝑒 = 𝑖 → 𝑗,
where 𝑗 is the head of 𝑒 and 𝑖 is the tail of 𝑒.
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Observe that

(M𝑦)
𝑇M𝐹 (𝑒

−𝑎𝑡
𝑦)

= ∑

𝑒=𝑖→ 𝑗∈E(𝐺⃗)

𝑚
𝑖𝑗
(𝑦
𝑗
− 𝑦
𝑖
)
𝑇

⋅ 𝑚
𝑖𝑗
[𝑓 (𝑒
−𝑎𝑡
𝑦
𝑗
) − 𝑓 (𝑒

−𝑎𝑡
𝑦
𝑖
)]

≤ 𝑒
−𝑎𝑡

⋅ 𝑙 ⋅ ∑

𝑒=𝑖→ 𝑗∈E(𝐺⃗)

𝑚
2

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗
− 𝑦
𝑖

󵄩󵄩󵄩󵄩󵄩

2

= 𝑙𝑒
−𝑎𝑡
(M𝑦)
𝑇
(M𝑦) = 𝑙𝑒

−𝑎𝑡
𝑦
𝑇
(𝐿 ⊗ 𝐼

𝑛
) 𝑦.

(11)

Hence,

𝑉̇ ≤ (𝑙 + 𝑎) 𝑦
𝑇
(𝐿 ⊗ 𝐼

𝑛
) 𝑦 − ℎ𝑦

𝑇
(𝐿
2
⊗ Γ) 𝑦

≤ (𝑙 + 𝑎) 𝑦
𝑇
(𝐿 ⊗ 𝐼

𝑛
) 𝑦 − ℎ𝑟𝑦

𝑇
(𝐿
2
⊗ 𝐼
𝑛
) 𝑦,

(12)

where 𝑟 = min
1≤𝑖≤𝑛

𝑟
𝑖
> 0.

Note that 𝐿 is a real and symmetric matrix, so we may let
𝑧
0
:= (1/√𝑛)1, 𝑧

1
, . . . , 𝑧

𝑁−1
as unit orthogonal eigenvectors

corresponding to eigenvalues 𝜆
0
= 0, 𝜆

1
, . . . , 𝜆

𝑁−1
of the

matrix 𝐿, respectively. Let 𝑧
0
, 𝑧
1
, . . . , 𝑧

𝑛−1
be an arbitrary

orthogonal base of R𝑛. Thus, 𝑧
𝑖
⊗ 𝑧
𝑗
, 𝑖 = 0, 1, . . . , 𝑁 − 1,

𝑗 = 0, 1, . . . , 𝑛 − 1, form an orthogonal base of R𝑁𝑛, which
are also the unit orthogonal eigenvectors of 𝐿⊗𝐼

𝑛
and 𝐿2 ⊗𝐼

𝑛
.

As the associated graph of 𝐿 or 𝐴 is connected, 𝜆
1
> 0, we

now write

𝑦 (𝑡) = ∑

𝑖,𝑗

𝛼
𝑖𝑗 (𝑡) 𝑧𝑖 ⊗ 𝑧𝑗. (13)

Then, we obtain

𝑉̇ ≤ (𝑙 + 𝑎) ∑

𝑖≥0,𝑗

𝜆
𝑖
𝛼
𝑖𝑗(𝑡)
2
− ℎ𝑟∑

𝑖≥0,𝑗

𝜆
2

𝑖
𝛼
𝑖𝑗(𝑡)
2

= (𝑙 + 𝑎) ∑

𝑖≥1,𝑗

𝜆
𝑖
𝛼
𝑖𝑗(𝑡)
2
− ℎ𝑟∑

𝑖≥1,𝑗

𝜆
2

𝑖
𝛼
𝑖𝑗(𝑡)
2

≤ (𝑙 + 𝑎) ∑

𝑖≥1,𝑗

𝜆
𝑖
𝛼
𝑖𝑗(𝑡)
2
− ℎ𝑟∑

𝑖≥1,𝑗

𝜆
𝑖
𝜆
1
𝛼
𝑖𝑗(𝑡)
2

= (𝑙 + 𝑎 − ℎ𝑟𝜆
1
) ∑

𝑖≥1,𝑗

𝜆
𝑖
𝛼
𝑖𝑗(𝑡)
2

= (𝑙 + 𝑎 − ℎ𝑟𝜆
1
) 𝑦
𝑇
(𝐿 ⊗ 𝐼

𝑛
) 𝑦

= (𝑙 + 𝑎 − ℎ𝑟𝜆
1
) (M𝑦)

𝑇
(M𝑦) .

(14)

Hence, we can choose a sufficiently large ℎ such that 𝛽 := 𝑙 +

𝑎 − ℎ𝑟𝜆
1
< 0. Thus,

𝑉̇ ≤ 𝛽(M𝑦 (𝑡))
𝑇
(M𝑦 (𝑡)) . (15)

It is obvious that 𝑉̇ = 0 if and only if M𝑦 = 0. In
addition, if M𝑦 = 0, then 𝑦 = 1 ⊗ 𝑦

1
, and 𝑉̇ = 0 by (10).

Therefore, the set 𝐸 = {𝑦 | M𝑦 = 0} is the largest invariant
set contained in 𝑉̇ = 0 for the system (4). Then, we obtain
lim
𝑡→∞

‖ M𝑦 ‖= 0 based on the LaSalle invariant principle
of differential equations. Hence, by Lemma 1, the complex
dynamical network (4) is synchronized under the updated

1 2

3 4

5

(a)

1 2

3 4

5

(b)

1 2

3 4

5

(c)

Figure 1: Three small networks.

law (6) of coupling strength 𝑐. In particular, the complex
dynamical network (1) is exponentially synchronized with
rate 𝑎.

Remark 3. In [18], the updated law of coupling strength 𝑐 is
given as follows:

̇𝑐 = 𝐾𝑥(𝑡)
𝑇M𝑇MM𝑇MΓ𝑥 (𝑡) = 𝐾𝑥(𝑡)

𝑇
𝐿
2
⊗ Γ𝑥 (𝑡) , (16)

where Γ = 𝐼
𝑁
⊗ Γ; the synchronization speed of complex

dynamical network (1) or (3) can be controlled by the con-
stant 𝐾 in (16). Here, we take 𝑘 = 𝐾𝑒

2𝑎𝑡; the synchronization
is realized with exponential rate 𝑎. So, we make a further
illustration of the above statement in [18] from (6) and
Theorem 2.

Remark 4. From (15) in the proof of Theorem 2, if 𝛽 is taken
smaller,𝑉(𝑡)will decrease quickly, and then the synchroniza-
tion of the network will be attained quickly.This will be done
if the Laplacian matrix of the coupling configuration graph
has a larger eigenvalue𝜆

1
. Based on the knowledge of spectral

graph theory (or see [23]),𝜆
1
is not decreased by adding edges

to original graph.Therefore, we can add edges to the coupling
configuration graph such that the complex network achieves
synchronization more quickly.

Remark 5. As the coupling configuration graph is connected
and Lemma 1 holds, the dynamical network (4) achieves
synchronization. If the graph is disconnected, the network
only can synchronize in each connected component of the
graph but not in the whole graph.

4. Numerical Simulations

In this section, we present several numerical examples to
show the theoretical results. In particular, we consider com-
plex dynamical networkswith the Lorenz systemas eachnode

[

[

𝑥̇
𝑖1

𝑥̇
𝑖2

𝑥̇
𝑖3

]

]

= [

[

𝛼 (𝑥
𝑖2
− 𝑥
𝑖1
)

𝛾𝑥
𝑖1
− 𝑥
𝑖1
𝑥
𝑖3
− 𝑥
𝑖2

𝑥
𝑖1
𝑥
𝑖2
− 𝛽𝑥
𝑖3

]

]

, 𝑖 = 1, 2, 3, 4, 5, (17)

which is chaotic when 𝛼 = 10, 𝛽 = 8/3, 𝛾 = 28. Three small
networks with five nodes are shown in Figure 1, where the
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Figure 2: Synchronization errors ‖ M𝑥 ‖ of three networks in Figure
1.

weight of every edge in each network is 1. Choose the inner
coupling link matrix to be Γ = diag {1, 2, 3}.

The corresponding coupling configuration matrices are
listed in the same order as follows:

[
[
[
[
[

[

−1 1 0 0 0

1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1

0 0 0 1 −1

]
]
]
]
]

]

,

[
[
[
[
[

[

−1 1 0 0 0

1 −3 1 0 1

0 1 −2 1 0

0 0 1 −2 1

0 1 0 1 −2

]
]
]
]
]

]

,

[
[
[
[
[

[

−1 1 0 0 0

1 −4 1 1 1

0 1 −2 1 0

0 1 1 −3 1

0 1 0 1 −2

]
]
]
]
]

]

.

(18)

According to Theorem 2, the updated law of coupling
strength 𝑐 is chosen as ̇𝑐 = 𝐾𝑥

𝑇
(𝑡)(𝐿
2
⊗ Γ)𝑥(𝑡) (i.e., 𝑘 =

𝐾, 𝑎 = 0 in (6)). Here 𝐾 = 0.0001, the initial coupling
strength 𝑐 = 0, and the initial value of 𝑥 is taken as [−8, 2,
35, 1, −9, −3, −4, 5, 1, 2, −4, 1, −7, 8, 4]

𝑇. The synchronization
errors ‖ M𝑥 ‖ of three networks are shown in Figure 2, respec-
tively, where the figure listed below is a local magnification of
the above figure, and Figure 2 also shows that the method in
[18] is effective to general networks. Numerical simulations
show that synchronization can be reached more quickly by
increasing the algebraic connectivity of the graph, which can
be realized by adding edges to original graph.
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Figure 3: Exponential Synchronization errors ‖M𝑥‖ of the network
in Figure 1(a).

Figure 3 shows that adaptive exponential synchronization
is achieved for complex dynamical network in Figure 1(a),
where 𝑘 = 0.0001, 𝑎 = 0, and 𝑎 = 3 in (6). The same results
also hold for the networks in Figures 1(b) and 1(c).

5. Conclusions

In this paper, an adaptive synchronizationmethod on general
networks or graphs is obtained. According to our method,
networksmay synchronize at an arbitrarily given exponential
rate by increasing coupling strength and synchronize more
quickly by increasing the algebraic connectivity of the cor-
responding graphs, which can be achieved by adding edges
to original graphs. The obtained results also extend the work
in [18] as a tree is a graph without cycles. Finally, numerical
simulations are provided to illustrate the effectiveness of our
theoretical results.
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