413 research outputs found

    Design of Adaptive Porous Micro-structures for Additive Manufacturing

    Get PDF
    AbstractThe emerging field of additive manufacturing with biocompatible materials has led to customized design of porous micro- structures. Complex micro-structures are characterized by freeform surfaces and spatially varying porosity. Today, there is no CAD system that can handle the design of these microstructures due to their high complexity. In this paper we propose a novel approach for generating a 3D adaptive model of a porous micro-structure based on predefined design. Using our approach a designer can manually select a region of interest (ROI) and define its porosity. In the core of our approach, the multi-resolution volumetric model is used. The generation of an adaptive model may contain topological changes that should be considered. In our approach, the process of designing a customized model is composed of the following stages (a) constructing a multi- resolution volumetric model of a porous structure (b) defining regions of interest (ROI) and their resolution properties (c) constructing the adaptive model. In this research, the approach was initially tested on 2D models and then extended to 3D models. The resulted adapted model can be used for design, mechanical analysis and manufacturing. The feasibility of the method has been applied on bone models that were reconstructed from micro-CT images

    CloudWalker: Random walks for 3D point cloud shape analysis

    Full text link
    Point clouds are gaining prominence as a method for representing 3D shapes, but their irregular structure poses a challenge for deep learning methods. In this paper we propose CloudWalker, a novel method for learning 3D shapes using random walks. Previous works attempt to adapt Convolutional Neural Networks (CNNs) or impose a grid or mesh structure to 3D point clouds. This work presents a different approach for representing and learning the shape from a given point set. The key idea is to impose structure on the point set by multiple random walks through the cloud for exploring different regions of the 3D object. Then we learn a per-point and per-walk representation and aggregate multiple walk predictions at inference. Our approach achieves state-of-the-art results for two 3D shape analysis tasks: classification and retrieval
    • …
    corecore