34 research outputs found

    Estimation of Dry Matter and N Nutrient Status of Choy Sum by Analyzing Canopy Images and Plant Height Information

    Get PDF
    The estimation accuracy of plant dry matter by spectra- or remote sensing-based methods tends to decline when canopy coverage approaches closure; this is known as the saturation problem. This study aimed to enhance the estimation accuracy of plant dry matter and subsequently use the critical nitrogen dilution curve (CNDC) to diagnose N in Choy Sum by analyzing the combined information of canopy imaging and plant height. A three-year experiment with different N levels (0, 25, 50, 100, 150, and 200 kg center dot ha(-1)) was conducted on Choy Sum. Variables of canopy coverage (CC) and plant height were used to build the dry matter and N estimation model. The results showed that the yields of N-0 and N-25 were significantly lower than those of high-N treatments (N-50, N-100, N-150, and N-200) for all three years. The variables of CC x Height had a significant linear relationship with dry matter, with R-2 values above 0.87. The good performance of the CC x Height-based model implied that the saturation problem of dry matter prediction was well-addressed. By contrast, the relationship between dry matter and CC was best fitted by an exponential function. CNDC models built based on CC x Height information could satisfactorily differentiate groups of N deficiency and N abundance treatments, implying their feasibility in diagnosing N status. N application rates of 50-100 kgN/ha are recommended as optimal for a good yield of Choy Sum production in the study region

    Using crop intercepted solar radiation and vegetation index to estimate dry matter yield of Choy Sum

    Get PDF
    An accurate assessment of vegetable yield is essential for agricultural production and management. One approach to estimate yield with remote sensing is via vegetation indices, which are selected in a statistical and empirical approach, rather than a mechanistic way. This study aimed to estimate the dry matter of Choy Sum by both a causality-guided intercepted radiation-based model and a spectral reflectance-based model and compare their performance. Moreover, the effect of nitrogen (N) rates on the radiation use efficiency (RUE) of Choy Sum was also evaluated. A 2-year field experiment was conducted with different N rate treatments (0 kg/ha, 25 kg/ha, 50 kg/ha, 100 kg/ha, 150 kg/ha, and 200 kg/ha). At different growth stages, canopy spectra, photosynthetic active radiation, and canopy coverage were measured by RapidScan CS-45, light quantum sensor, and camera, respectively. The results reveal that exponential models best match the connection between dry matter and vegetation indices, with coefficients of determination (R2) all below 0.80 for normalized difference red edge (NDRE), normalized difference vegetation index (NDVI), red edge ratio vegetation index (RERVI), and ratio vegetation index (RVI). In contrast, accumulated intercepted photosynthetic active radiation (Aipar) showed a significant linear correlation with the dry matter of Choy Sum, with root mean square error (RMSE) of 9.4 and R2 values of 0.82, implying that the Aipar-based estimation model performed better than that of spectral-based ones. Moreover, the RUE of Choy Sum was significantly affected by the N rate, with 100 kg N/ha, 150 kg N/ha, and 200 kg N/ha having the highest RUE values. The study demonstrated the potential of Aipar-based models for precisely estimating the dry matter yield of vegetable crops and understanding the effect of N application on dry matter accumulation of Choy Sum

    Using crop intercepted solar radiation and vegetation index to estimate dry matter yield of Choy Sum

    Get PDF
    An accurate assessment of vegetable yield is essential for agricultural production and management. One approach to estimate yield with remote sensing is via vegetation indices, which are selected in a statistical and empirical approach, rather than a mechanistic way. This study aimed to estimate the dry matter of Choy Sum by both a causality-guided intercepted radiation-based model and a spectral reflectance-based model and compare their performance. Moreover, the effect of nitrogen (N) rates on the radiation use efficiency (RUE) of Choy Sum was also evaluated. A 2-year field experiment was conducted with different N rate treatments (0 kg/ha, 25 kg/ha, 50 kg/ha, 100 kg/ha, 150 kg/ha, and 200 kg/ha). At different growth stages, canopy spectra, photosynthetic active radiation, and canopy coverage were measured by RapidScan CS-45, light quantum sensor, and camera, respectively. The results reveal that exponential models best match the connection between dry matter and vegetation indices, with coefficients of determination (R2) all below 0.80 for normalized difference red edge (NDRE), normalized difference vegetation index (NDVI), red edge ratio vegetation index (RERVI), and ratio vegetation index (RVI). In contrast, accumulated intercepted photosynthetic active radiation (Aipar) showed a significant linear correlation with the dry matter of Choy Sum, with root mean square error (RMSE) of 9.4 and R2 values of 0.82, implying that the Aipar-based estimation model performed better than that of spectral-based ones. Moreover, the RUE of Choy Sum was significantly affected by the N rate, with 100 kg N/ha, 150 kg N/ha, and 200 kg N/ha having the highest RUE values. The study demonstrated the potential of Aipar-based models for precisely estimating the dry matter yield of vegetable crops and understanding the effect of N application on dry matter accumulation of Choy Sum

    Underwater Target Localization and Synchronization for a Distributed SIMO Sonar with an Isogradient SSP and Uncertainties in Receiver Locations

    No full text
    A distributed single-input multiple-output (SIMO) sonar system is composed of a sound source and multiple underwater receivers. It provides an important framework for underwater target localization. However, underwater hostile environments bring more challenges for underwater target localization than terrestrial target localization, such as the difficulties of synchronizing all the underwater receiver clocks, the varying underwater sound speed and the uncertainties of the locations of the underwater receivers. In this paper, we take the sound speed variation, the time synchronization and the uncertainties of the receiver locations into account, and propose the underwater target localization and synchronization (UTLS) algorithm for the distributed SIMO sonar system. In the distributed SIMO sonar system, the receivers are organized in a star topology, where the information fusion is carried out in the central receiver (CR). All the receivers are not synchronized and their positions are known with uncertainties. Moreover, the underwater sound speed is approximately modeled by a depth-dependent sound speed profile (SSP). We evaluate our proposed UTLS algorithm by comparing it with several benchmark algorithms via numerical simulations. The simulation results reveal the superiority of our proposed UTLS algorithm
    corecore