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Zhejiang University of Water Resources and Electric Power, Hangzhou, China, 6Department of
Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences,
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An accurate assessment of vegetable yield is essential for agricultural production

and management. One approach to estimate yield with remote sensing is via

vegetation indices, which are selected in a statistical and empirical approach,

rather than a mechanistic way. This study aimed to estimate the dry matter of

Choy Sum by both a causality-guided intercepted radiation-based model and a

spectral reflectance-based model and compare their performance. Moreover,

the effect of nitrogen (N) rates on the radiation use efficiency (RUE) of Choy Sum

was also evaluated. A 2-year field experiment was conducted with different N

rate treatments (0 kg/ha, 25 kg/ha, 50 kg/ha, 100 kg/ha, 150 kg/ha, and 200 kg/

ha). At different growth stages, canopy spectra, photosynthetic active radiation,

and canopy coverage were measured by RapidScan CS-45, light quantum

sensor, and camera, respectively. The results reveal that exponential models

best match the connection between dry matter and vegetation indices, with

coefficients of determination (R2) all below 0.80 for normalized difference red

edge (NDRE), normalized difference vegetation index (NDVI), red edge ratio

vegetation index (RERVI), and ratio vegetation index (RVI). In contrast,

accumulated intercepted photosynthetic active radiation (Aipar) showed a

significant linear correlation with the dry matter of Choy Sum, with root mean

square error (RMSE) of 9.4 and R2 values of 0.82, implying that the Aipar-based

estimation model performed better than that of spectral-based ones. Moreover,

the RUE of Choy Sum was significantly affected by the N rate, with 100 kg N/ha,

150 kg N/ha, and 200 kg N/ha having the highest RUE values. The study

demonstrated the potential of Aipar-based models for precisely estimating the

dry matter yield of vegetable crops and understanding the effect of N application

on dry matter accumulation of Choy Sum.
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1 Introduction

Choy Sum (Brassica rapa var. parachinensis) is one of the most

productive and consumed vegetables in Asia (Kok et al., 1991; Zou

et al., 2021). Accurate estimation of its dry matter yield is vital for

the assessment of crop performance and decision-making during

the growth season. Laboratory analysis of fresh or dry plants is

conventionally performed to determine yield, but the process is

time- and labor-intensive. Furthermore, plants are typically

sampled on limited spots, which may not accurately represent dry

matter yield across the complete region. Therefore, a quick and

precise method for determining the dry matter yield of Choy Sum

is required.

Due to the non-destructive, accurate, and timely access to crop

information, the spectral-based remote sensing method has been

used extensively in agriculture to estimate the crop agronomy

parameters including nitrogen concentration, leaf area index,

canopy coverage, and biomass (Mulla, 2013; Pereira et al., 2020).

One typical approach is to use statistically selected vegetation

indices to estimate crop dry matter of wheat (Erdle et al., 2011;

Elsayed et al., 2021), rice (Gnyp et al., 2014), potato (Liu et al.,

2022), etc. However, vegetation indices are prone to saturation at

dense canopies, resulting in decreased accuracy of the estimation

model (Wang et al., 2012; Gnyp et al., 2014). This is mainly due to

the fact that spectral penetration at a specific wavelength is

constrained on dense canopies, a mechanistic method that takes

into account that plant growth is needed to address the problem of

saturation. Thus, a method based on canopy intercepted solar

radiation and its use efficiency is proposed in this study.

As plant dry matter (DM) is the production of photosynthetic

activity, which uses sun radiation, it is determined by accumulated

intercepted photosynthetic active radiation (Aipar) and the

efficiency of using it (Leblon et al., 1991; Andersen et al., 1996).

This can be expressed in the form of DM = RUE × Aipar, where

RUE is the radiation use efficiency. RUE is a paramount parameter

for crop growth models. Among all crop management factors,

nitrogen (N) application rate can affect crop dry matter via its

effects on Aipar, RUE, or both (Shah et al., 2004; Zhou et al., 2016).

RUE is primarily controlled by crop net photosynthesis (Monteith,

1994), which in turn has a close dependency on leaf N

concentration (Lawlor et al., 1989). Therefore, N fertilization

affects RUE by influencing the photosynthesis rate (Muchow and

Sinclair, 1994). Despite the fact that numerous studies have been

conducted on the impact of N on RUE or Aipar (Chakwizira et al.,

2018; Wang et al., 2020; Cafaro La Menza et al., 2022), very few of

them have focused on the vegetable crop. Thus, the impact of N
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rates on the RUE of Choy Sum needs to be investigated. In addition,

the potential of using the Aipar-based method to estimate the dry

matter of vegetable crops is still unknown.

Therefore, the purposes of this study were to 1) explore the

capacity of Aipar to estimate the dry matter yield of Choy Sum and

2) investigate the effect of N rates on the radiation use efficiency of

Choy Sum.
2 Materials and methods

2.1 Field experiments

A 2-year field experiment was carried out from 2021 to 2022 at

the Qiyuan farm site (30°100E, 119°480N), Hangzhou City, China.

The experimental site has a typical subtropical monsoon climate

condition and is characterized by abundant precipitation with mild

seasonal temperature variation. The yearly mean annual

temperature and total precipitation are 18.7°C and 1,930 mm,

respectively. The predominant soil is characterized as loamy,

having a pH of 7.9, total N content of 1.45 g/kg, hydrolytic N

content of 199 mg/kg, and organic matter of 24.1 g/kg.

In 2021, Choy Sum was transplanted on April 15 and harvested

on May 24. In 2022, Choy Sum was transplanted on April 1 and

harvested on April 25. The average temperature was 22.9°C and the

total precipitation was 147.0 mm in the growth season of 2021, while

the average temperature was 18.1°C and the total precipitation was

121.7 mm in the growth season of 2022. Pumpkin and sweet potato

were the previous crops in both seasons. Each plot had a size of 5 m ×

5 m. The plant density was 0.15 m × 0.15 m and 0.3 m × 0.3 m in

2021 and 2022, respectively. Six treatments were included in each

experiment differentiated by varying N rates of 0 kg/ha, 25 kg/ha, 50

kg/ha, 100 kg/ha, 150 kg/ha, and 200 kg/ha (defined as N0, N25, N50,

N100, N150, and N200, respectively). The experimental design utilized

in the field was a completely randomized block design, which

consisted of three replications. Urea was used to apply N fertilizer

at transplantation, while 30 kg/ha of phosphorus (P) and 90 kg/ha of

potassium (K) were applied simultaneously. The administration of

irrigation, pest control, and disease management were conducted in

accordance with regional best practices.
2.2 Sample collection and data acquisition

A total of 90 and 54 samples were collected in 2021 and 2022,

respectively (Table 1). Each plot had a sub-plot of 0.5 m × 0.7 m
TABLE 1 Field experimental design in 2021 and 2022.

Year Transplanting date Harvest date Replicates N rates (kg N/ha) Sampling time (days after transplanting)

2021 April 15 May 24 3
0, 25, 50,

100,150, 200
15–21–24–27–31

2022 April 1 April 25 3
0, 25, 50,

100,150, 200
15–20–25
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marked for sampling, and plants within the sub-plot area were

collected and stored for subsequent analysis. Digital images and

spectral measurements were taken prior to destructive sampling. All

samples were desiccated in the oven at 105° C for 30 minutes and

then at 75° C for 48 hours to measure dry matter, which refers to the

dry weight of above-ground plant material per unit area.

Subsequently, plant N concentration (PNC, %) of dried samples

was determined by the Kjeldahl method (KDN-B, Shanghai Xinjia

Electronic, Co., Ltd., Shanghai, China).

A hand-held field spectrometer (RapidScan CS-45; Holland

Scientific, Lincoln, NE, USA) was used to measure canopy

spectral reflectance at 670 nm (defined as Red), 730 nm (defined

as RedEdge), and 780 nm (defined as near infrared (NIR))

wavelength and provides normalized difference red edge (NDRE)

and normalized difference vegetation index (NDVI) (Aranguren

et al., 2019). For each plot, a representative row was selected for

spectral data measurement. The instrument was maintained

approximately 1 m above the crop canopy during the scanning

procedure. The four most commonly used vegetation indices

named NDRE, NDVI, red edge ratio vegetation index (RERVI)

(Erdle et al., 2011), and ratio vegetation index (RVI) (Zhou et al.,

2017) were calculated as follows.

NDRE = (NIR  −  RedEdge) = (NIR  +  RedEdge), (1)

NDVI = (NIR  −  Red) = (NIR  +  Red), (2)

RERVI = NIR = RedEdge,   (3)

RVI = NIR = Red : (4)

A digital camera (D5600, Nikon, Tokyo, Japan) was used to

capture crop images, which were held above the crop canopy at a

distance of 1 m. Images were converted to HSI three-color space

(hue, saturation, and intensity channels) using Matlab (The

MathWorks, Inc., Natick, MA, USA) programming. The

threshold of H values was used to generate binary pictures. Those

pixels with H values between 0.2 and 0.4 were given the value 1

(green vegetation), while other pixels without vegetation were put to

0 (soil background). Canopy coverage was calculated as the

proportion of the number of pixels with a value of 1 to the whole

pixel number in the binary image.
2.3 Radiation interception measurement by
light quantum sensor

Photosynthetic active radiation was measured by a light

quantum sensor (model Li-190R, Li-Cor Inc., Lincoln, NE, USA),

which was installed near the experimental site. The radiation sensor

was connected to a data logger (model CR3000 Series), which was

used to record incident photosynthetic active radiation every 10

minutes. Daily intercepted photosynthetic active par (Ipar) and

accumulated Ipar of plant canopy were calculated as follows:

Ipar = I0Fipar, (5)
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where I0 is photosynthetic active radiation retrieved directly

from the sensor. Fipar is the fraction of photosynthetic active

radiation, which was substituted by observed canopy coverage in

this study. Aipar is accumulated intercepted photosynthetic active

radiation, with t as the growth period under consideration.
2.4 Statistical analysis

The coefficient of determination (R2) was utilized to assess the

general fit of the regression equation. Moreover, root mean square

error (RMSE) indicates the performance of regression models. They

were calculated as follows:

R2 =  o
N
i=1(Pi − Oi)

2

oN
i=1(Pi − �P)2

, (7)

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

�oN
i=1(Pi − Oi)

2

r
, (8)

where N is the number of observations, Pi  is the observed value,
�P is the mean of observed values, and Oi is the predicted value.

The Tukey–Kramer method was applied to test the significant

differences of PNC, DM, and RUE under different N treatments.

The nominal alpha value of 0.05 was applied to determine R2 and

significance levels. In this study, OriginPro 2023 (OriginLab Corp.,

Northampton, MA, USA) was used to draw all graphs, and SPSS

14.0 software (SPSS Inc., Chicago, IL, USA) was used to perform

statistical analysis.
3 Results

3.1 Effect of N rates on plant N
concentration and dry matter

Table 2 displays the variation in PNC at different growth

stages. In 2021, the PNC ranged from 3.02% to 5.71%, while

in 2022, it ranged from 3.14% to 4.99%. In both seasons, the

PNC of Choy Sum declined with the progress of crop growth.

In 2021, the PNC of N0 and N25 treatments was significantly

lower than that of the other treatments (N100, N150, and N200).

The results in 2022 showed a similar pattern to 2021, although PNC

of N25 only showed a significantly lower value until 25 days

after transplanting.

The dry matter of Choy Sum varied from 4.30 g/m2 to 93.12 g/

m2 in 2021 and varied from 3.87 g/m2 to 20.57 g/m2 in 2022

(Table 3). In 2021, a notable difference was detected in the

dry matter between low N treatments (N0 and N25) and high

N treatments (N50, N100, N150, and N200) at all growth stages.

In 2022, there was also an obvious difference in the amount

of dry matter between high N treatments (N100, N150, and N200)

and low N treatments (N0 and N25) at 16, 20, and 25 days

after transplanting.
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3.2 Estimation of dry matter using
vegetation indices and Aipar

Dry matter was estimated by two different models in this study, i.e.,

spectral vegetation index-based and Aipar-based models. Dry matter
Frontiers in Plant Science 04
and vegetation indices were observed to be closely related. Their

relationship can be best fitted by exponential models (Figure 1), while

the performances of linear models were relatively worse than those of

the exponential ones. The coefficient of determination of all exponential

models had considerable R2 of 0.74, 0.76, 0.75, and 0.76 for NDRE,
TABLE 3 The variation in plant dry matter (g/m2) of Choy Sum under different N rates in 2021 and 2022.

Year N rates (kg/ha)
Days after transplanting

14 20 23 26 33

2021

0 4.30 ± 0.96 b 11.79 ± 3.51 b 14.60 ± 3.02 b 19.15 ± 1.78 c 28.59 ± 1.75 c

25 6.30 ± 0.79 ab 19.96 ± 2.21 ab 21.86 ± 2.81 b 38.80 ± 6.10 b 45.01 ± 13.28 bc

50 7.33 ± 0.90 ab 30.24 ± 8.71 a 36.33 ± 5.71 a 52.36 ± 8.81 ab 65.90 ± 18.81 abc

100 8.00 ± 1.31 a 33.32 ± 3.66 a 38.88 ± 5.01 a 66.14 ± 6.86 a 68.97 ± 8.22 ab

150 6.80 ± 1.74 ab 26.76 ± 8.06 ab 40.75 ± 3.91 a 53.44 ± 11.36 ab 74.67 ± 17.33 ab

200 7.03 ± 0.50 ab 33.45 ± 5.63 a 39.01 ± 7.26 a 59.03 ± 3.08 a 93.12 ± 15.74 a

Year N rates (kg/ha)
Days after transplanting

16 20 – 25 –

2022

0 3.87 ± 0.23 d 5.70 ± 0.95 c – 7.57 ± 0.40 b –

25 6.47 ± 2.02 bc 9.30 ± 2.11 bc – 14.63 ± 2.11 ab –

50 5.67 ± 0.98 c 10.90 ± 2.86 ab – 16.26 ± 2.21 ab –

100 6.57 ± 0.25 bc 10.73 ± 2.14 ab – 19.27 ± 4.48 a –

150 7.63 ± 1.82 ab 11.80 ± 3.50 ab – 16.90 ± 1.54 a –

200 8.00 ± 2.31 a 13.10 ± 2.65 a – 20.23 ± 7.95 a –
Values with a distinct letter after them are significant at the 5% level using Tukey–Kramer method.
TABLE 2 The variation in plant N concentration (PNC, %) of Choy Sum under different N rates in 2021 and 2022.

Year N rates (kg/ha)
Days after transplanting

14 20 23 26 33

2021

0 3.50 ± 0.11 c 3.57 ± 0.30 b 3.80 ± 0.12 b 3.02 ± 0.17 b 3.12 ± 0.35 b

25 4.75 ± 0.05 b 4.50 ± 1.28 ab 3.92 ± 0.10 b 3.76 ± 0.88 ab 3.27 ± 0.42 b

50 5.71 ± 0.12 a 5.12 ± 0.56 a 5.30 ± 0.17 a 3.99 ± 0.62 ab 4.08 ± 0.79 ab

100 5.58 ± 0.09 a 4.97 ± 0.75 a 5.46 ± 0.36 a 4.79 ± 0.91 a 4.43 ± 0.29 ab

150 5.51 ± 0.12 a 5.15 ± 0.37 a 5.23 ± 0.33 a 4.67 ± 0.37 a 4.86 ± 0.74 a

200 5.70 ± 0.20 a 4.39 ± 0.74 a 5.64 ± 0.39 a 4.44 ± 1.02 a 5.31 ± 0.33 a

Year N rates (kg/ha)
Days after transplanting

16 20 – 25 –

2022

0 3.97 ± 0.47 b 4.22 ± 0.09 b – 3.70 ± 0.71 a –

25 4.94 ± 0.19 a 4.68 ± 0.28 ab – 3.27 ± 0.21 b –

50 4.77 ± 0.06 a 4.52 ± 0.09 ab – 3.14 ± 0.35 b –

100 4.99 ± 0.09 a 4.93 ± 0.22 a – 3.43 ± 0.37 a –

150 4.84 ± 0.16 a 3.55 ± 0.45 c – 3.57 ± 0.14 a –

200 5.11 ± 0.20 a 4.32 ± 0.23 ab – 3.70 ± 0.49 a –
Values with a distinct letter after them are significant at the 5% level using Tukey–Kramer method.
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NDVI, RERVI, and RVI, respectively. In contrast, the correlation

between dry matter and Aipar was significantly linear (R2 = 0.82).
3.3 The relationship between dry matter
and accumulated intercepted
photosynthetic active radiation

A linear relationship between DM and Aipar was detected

across different N rates in both 2021 and 2022 (Figure 2;

Table 4). The linear relationship was derived from the equation of

DM = RUE × Aipar, where RUE was treated as the slope of the

linear function, and a comparison of RUE of different N treatments

was also conducted. In both 2021 and 2022, the RUE of N0 and N250

was substantially lower than the RUE of other treatments. N200

obtained the highest RUE of 0.21 in 2021, while N100 obtained the
Frontiers in Plant Science 05
highest RUE of 0.11 in 2022. Significant differences in RUE between

N100, N150, and N200 were not detected. The R2 values of all

regression models were higher than 0.95.
4 Discussion

4.1 Estimation of dry matter by spectral-
and Aipar-based models

In this study, both Aipar-based and spectral reflectance-based

models were adopted to estimate the dry matter yield of Choy Sum,

and the performances of these two types of models were

comprehensively compared. Four commonly used vegetation

indices were extracted from the active field spectrometer to build

estimation models of Choy Sum yield.
A B

D

E

C

FIGURE 1

The relation between dry matter (g/m2) and NDRE (A), NDVI (B), RERVI (C), RVI (D), and Aipar (E) across 2021 and 2022 seasons. The number of
samples is 48, and each value is the mean of three replicates. E and L stand for exponential (E) and linear (L) models, respectively. All fitted
relationship functions were tested to be highly significant. NDRE, normalized difference red edge; NDVI, normalized difference vegetation index;
RERVI, red edge ratio vegetation index; RVI, ratio vegetation index.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1208404
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2023.1208404
The relationships between vegetation indices and dry matter

yield were best fitted by exponential models, which outperformed

the linear ones, suggesting saturation problems occurred when dry

matter approached a certain high level (Figure 1). This

phenomenon agreed with the findings of other studies, where

saturation often occurred for high biomass or LAI values in the

late growth stage. For instance, it occurs when biomass reached 3 t/

ha or NDVI approached 0.95 for rice (Gnyp et al., 2014), or NDVI

reached 0.8 for wheat (Erdle et al., 2011), while it occurred when

NDVI was approximately 0.8 for Choy Sum in this study.

Nonetheless, dry matter can still be satisfactorily estimated by

vegetation index-based models over the two seasons (Figure 1).

The saturation issue could be well addressed using the Aipar-

based model, as Aipar increased proportionally to dry matter, even

when the canopy approached a high level (Figure 1); this is due to

the fact that the parameter of Aipar integrates not only canopy

coverage but also actual sun radiation. The constraint of the study is
Frontiers in Plant Science 06
that Fipar was not directly measured; alternatively, canopy coverage

was used as a substitution for Fipar. This could lead to a deviation of

the true RUE values, although Haverkort reported that canopy

coverage could be used as an approximation of Fipar on potato

crops (Haverkort et al., 1991; Chakwizira et al., 2015). Many studies

calculated Fipar from remote sensing or leaf area index since there

exist close relationships and turned out to be relatively accurate

(Zhou et al., 2017; Chakwizira et al., 2018; Peng et al., 2021).

Nonetheless, the Fipar estimation method in this study has rapid

access at a lower cost, despite some precision sacrificed.

Furthermore, since only 2 years’ data in one site were contained

in this study, and there existed many factors of environmental

variation, the specific model may not be so universal over a large

scale of time and space but would be a similar trend.
4.2 Effect of N rates on RUE

In both 2021 and 2022, significantly lower RUE was detected in

non-nitrogen (N0) and low-nitrogen treatments (N25) than in the

high N treatments of N50, N100, N150, and N200, among which RUE

showed no difference. This indicated that the accumulation of dry

matter was caused by the increase of not only Aipar but also RUE.

When the N rate was above 50 kg N/ha, RUE will not be a

restriction factor for DM accumulation, implying DM increase

was entirely caused by Aipar increase resulting from N

application. Crops have different strategies to cope with N

deficiency; some crops maintain chlorophyll content to keep

constant radiation use efficiency, i.e., with RUE unaffected. The

research in potatoes showed that RUE remained unchanged at

different N levels (Millard and Marshall, 1986; Bangemann et al.,

2014), as potatoes tend to reduce the leaf area instead of

photosynthesis efficiency per unit leaf area when N is insufficient

(Vos and van der Putten, 1998); a similar phenomenon is also

demonstrated on beet crops (Chakwizira et al., 2018). In contrast,

other studies showed that RUE increased significantly with N

application and leveled off when the N rate reached to medium

level on corn (Muchow and Davis, 1988; Kaur et al., 2012; Kar and
TABLE 4 Radiation use efficiency (RUE) of Choy Sum in 2021 and 2022.

Year N rates (kg/ha) RUE

2021

0 0.12 d

25 0.14 c

50 0.19 b

100 0.20 ab

150 0.20 ab

200 0.21 a

2022

0 0.07 b

25 0.08 ab

50 0.10 a

100 0.11 a

150 0.09 a

200 0.10 a
For a specific year, values with a distinct letter after them are significant at the 5% level using
Tukey–Kramer method.
A B

FIGURE 2

The linear correlation between dry matter and accumulated intercepted photosynthetic active radiation (Aipar) across different N levels in 2021 (A)
and 2022 (B).
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Kumar, 2016). In the case of Choy Sum, increased leaf N content

was mainly used for thylakoid accumulation in photosynthetic cells

and synthesis of carboxylases, rather than increasing leaf area to

capture light (Khairun et al., 2016), corroborating well with the

discovery of this research. In conclusion, N application significantly

increases the RUE of Choy Sum when the N rate is below 50 kg N/ha.

However, beyond this threshold, further increases in the N rate did

not affect RUE.
5 Conclusions

This study evaluated the performance of Aipar and spectral-

based methods for estimating the dry matter yield of Choy Sum

over two growing seasons. The results showed that the relationships

between DM of Choy Sum and vegetation indices were best fitted by

exponential models due to the saturation problems in the case of

high biomass, while Aipar had a significant linear relationship with

DM (R2 = 0.82) even when the canopy approached a high level. This

suggests that Aipar could be used as a better candidate for dry

matter yield estimation. With regard to the effect of N application

on the RUE of Choy Sum, the RUE of crops applied with low N

(0–25 kg N/ha) was significantly lower than crops applied with high

N (50–200 kg N/ha). Therefore, when applied with a N rate above

50 kg N/ha, dry matter yield production of Choy Sum will not be

constrained by reduced RUE.
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