12 research outputs found

    Failure of a Glass Ionomer to Remineralize Apatite-depleted Dentin

    Get PDF
    Remineralization of demineralized dentin lesions adjacent to glass-ionomer cements (GICs) has been reported in the literature. This study tested the hypothesis that a strontium-based GIC can remineralize completely demineralized dentin by nucleation of new apatite crystallites within an apatite-free dentin matrix. Human dentin specimens were acid-etched, bonded with Fuji IXGP, and immersed in a calcium-and-phosphate-containing 1.5X simulated body fluid (SBF) for 1-4 months. Polyacrylic acid and polyvinylphosphonic acid biomimetic analogs were added to the SBFs to create 2 additional remineralization media. Specimens were processed by transmission electron microscopy (TEM). No apatite deposition could be identified in the completely demineralized dentin in any of the specimens immersed in the 3 remineralization media, despite TEM/EDX evidence of diffusion of ions specific to the strontium-based GIC into the demineralized dentin. The hypothesis was rejected; mineral concentration alone is not a sufficient endpoint for assessing the success of contemporary remineralization strategies

    In vitro

    No full text

    Advances in Antimicrobial Microneedle Patches for Combating Infections

    No full text
    Skin infections caused by bacteria, viruses and fungi are difficult to treat by conventional topical administration because of poor drug penetration across the stratum corneum. This results in low bioavailability of drugs to the infection site, as well as the lack of prolonged release. Emerging antimicrobial transdermal and ocular microneedle patches have become promising medical devices for the delivery of various antibacterial, antifungal, and antiviral therapeutics. In the present review, skin anatomy and its barriers along with skin infection are discussed. Potential strategies for designing antimicrobial microneedles and their targeted therapy are outlined. Finally, biosensing microneedle patches associated with personalized drug therapy and selective toxicity toward specific microbial species are discussed. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    An All-in-One Adhesive Does Not Etch beyond Hybrid Layers

    Get PDF
    Continuous etching of aggressive all-in-one adhesives occurs in wet dentin tubules after polymerization of the adhesives. This study challenged the hypothesis that unpolymerized acidic monomers from an aggressive all-in-one self-etching adhesive continue to etch beyond dentin hybrid layers. Dentin surfaces bonded with Adper Prompt L-Pop were sectioned into 0.3-mm-thick slabs. Some of the slabs were stored in water (pH 6.8) or glycine buffer (pH 11.1) for six weeks and then examined by CLSM, SEM, and TEM. The rest were immersed in a biomimetic remineralizing medium for up to 4 months. Morphologic analysis indicated no difference in demineralization thickness between the two 6-week storage groups. However, increased permeability and loss of integrity occurred along the base of the hybrid layers in the glycine buffer group, but not in the water storage group. These findings were also confirmed by the results of biomimetic remineralization along the bases of those hybrid layers
    corecore