273 research outputs found
Expanding a fluorescent RNA alphabet: synthesis, photophysics and utility of isothiazole-derived purine nucleoside surrogates.
A series of emissive ribonucleoside purine mimics, all comprised of an isothiazolo[4,3-d]pyrimidine core, was prepared using a divergent pathway involving a key Thorpe-Ziegler cyclization. In addition to an adenosine and a guanosine mimic, analogues of the noncanonical xanthosine, isoguanosine, and 2-aminoadenosine were also synthesized and found to be emissive. Isothiazolo 2-aminoadenosine, an adenosine surrogate, was found to be particularly emissive and effectively deaminated by adenosine deaminase. Competitive studies with adenosine deaminase with each analogue in combination with native adenosine showed preference for the native substrate while still deaminating the isothiazolo analogues
Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position.
Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon University of California base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5'- and 3'-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix
Recommended from our members
50 years in the making: acp3U, an amino-acid-containing nucleoside, links N-glycans and RNA in glycoRNA.
In a recent publication in Cell, Xie et al.1 report a sensitive and scalable method for the detection and characterization of native glycoRNAs and identify acp3U, an abundant modified nucleoside discovered 50 years ago in tRNAPhe, as one of the primary attachment sites for N-glycans
Emissive Alkylated Guanine Analogs as Probes for Monitoring O 6 -Alkylguanine-DNA-transferase Activity
Recommended from our members
Emissive Guanosine Analog Applicable for Real-Time Live Cell Imaging
A new emissive guanosine analog CF3thG, constructed by a single trifluoromethylation step from the previously reported thG, displays red-shifted absorption and emission spectra compared to its precursor. The impact of solvent type and polarity on the photophysical properties of CF3thG suggests that the electronic effects of the trifluoromethyl group dominate its behavior and demonstrates its susceptibility to microenvironmental polarity changes. In vitro transcription initiations using T7 RNA polymerase, initiated with CF3thG, result in highly emissive 5'-labeled RNA transcripts, demonstrating the tolerance of the enzyme toward the analog. Viability assays with HEK293T cells displayed no detrimental effects at tested concentrations, indicating the safety of the analog for cellular applications. Live cell imaging of the free emissive guanosine analog using confocal microscopy was facilitated by its red-shifted absorption and emission and adequate brightness. Real-time live cell imaging demonstrated the release of the guanosine analog from HEK293T cells at concentration-gradient conditions, which was suppressed by the addition of guanosine
Modification of oligodeoxynucleotides by on-column Suzuki cross-coupling reactions
The on-column functionalization of oligodeoxynucleotides via base-free Suzuki cross-coupling reactions is reported herein. These cross-coupling reactions were carried out with various boronic acids and either full-length modified oligonucleotides containing one or more 2′-deoxy-5-iodouridine (5IdU) monomer(s) or on oligonucleotide fragments immediately after incorporation of 5IdU. Five different functionalities were coupled to oligonucleotides containing one or three attachment points.</p
- …
