8 research outputs found

    Study on operational space control of a redundant robot with un-actuated joints: experiments under actuation failure scenarios

    Get PDF
    This paper analyzes operational space dynamics for redundant robots with un-actuated joints and reveals their highly nonlinear dynamic impacts on operational space control (OSC) tasks. Unlike conventional OSC approaches that partly address the under-actuated system by introducing rigid grasping or contact constraints, we deal with the problem even without such physical constraints which have been overlooked, yet it includes a wide range of applications such as free-floating robots and manipulators with passive joints or unwanted actuation failure. In addition, as an intuitive application example of the drawn result, an OSC is formulated as an optimization problem to alleviate the dynamics disturbance stemmed from the un-actuated joints and to satisfy other inequality constraints. The dynamic analysis and the proposed control method are verified by a number of numerical simulations as well as physical experiments with a 7-degrees-of-freedom robotic arm. In particular, we consider joint actuation failure scenarios that can be occurred at certain joints of a torque-controlled robot and practical case studies are performed with an actual redundant robot arm

    A Generalized Index for Fault-tolerant Control in Operational Space under Free-swinging Actuation Failure

    Get PDF
    Actuation failure and fault-tolerant control under the actuation failure scenario have drawn more attention in accordance with the recent increasing demand for reliable robot control applications such for long-term and remote operation. The emergence of control torque loss, i.e., the free-swinging failure, is particularly challenging when the robot performs dynamic operational space tasks due to complexities stemming from redundancies in the kinematic structure as well as a dynamical disturbance in the under-actuated multi-body system. To reinforce robustness and accuracy of task-space control under the failure condition, this letter proposes a performance index, named generalized failure-susceptibility (GFS), which is formulated to render thorough dynamic and kinematic effects caused by the un-actuated joints. The GFS index is then exploited with the hierarchical task controller, where self-motion is controlled to minimize the index in real-time. Several experiments with a seven-degrees-of-freedom torque-controlled robot verify that the proposed control strategy with the GFS index effectively improves fault tolerance against anticipating actuation failure

    Computationally Efficient HQP-based Whole-body Control Exploiting the Operational-space Formulation

    Get PDF
    This paper proposes a novel and practical approach to enhance the computational efficiency of the hierarchical quadratic programming (HQP)-based whole-body control. The HQP method is known to offer control solutions satisfying strict priority with various constraints for multiple-tasks execution. However, it inherently comes at the price of high computation time to solve QP optimization problems in each hierarchical level which limits practicability in a real-time control system with fast sampling time. To mitigate this issue, we propose that the operational space formulation is incorporated into the HQP method, where the decision variables are intuitively defined at the task level and possess smaller dimensions. Indeed, it serves faster whole-body control solution for multiple tasks under equality and inequality constraints yet strictly fulfilling the task priority. The performance of the proposed method is experimentally verified on the actual floating-based humanoid, named TOCABI with 33 degrees-of-freedom. In addition, computation time is analyzed by comparison with conventional HQP and other advanced implementation forms

    Toward Reactive Walking: Control of Biped Robots Exploiting an Event-Based FSM

    Get PDF
    Reactivity to unforeseen disturbances is one of the most crucial characteristics for biped robots to walk robustly in the real world. Nevertheless, conventional walking methods generally have limited capability for generating rapid reactions to disturbances, because in these methods it is necessary to wait until the end of the preplanned time period to proceed to the next phase. In this study, to improve reactivity, we develop an event-based finite-state machine (E-FSM) for walking pattern generation. Reactivity is enhanced by determining the state transition conditions of the E-FSM only with time-independent events based on the present robot state. Moreover, in the E-FSM, the robot can walk robustly even when the center of mass and the swing foot motion are disturbed, by employing the capture point concept combined with a new swing foot position constraint. Finally, we propose to control the walking robot by incorporating the E-FSM with an inverse dynamics-based motion/force controller to achieve compliant behavior. This can provide safe responses to external disturbances. The developed method is verified by experiments on a 12-degrees-of-freedom torque-controlled biped robot while it locomotes under irregular external disturbances applied to the upper body or swing leg

    A Whole-Body Control Framework Based on the Operational Space Formulation Under Inequality Constraints via Task-Oriented Optimization

    Get PDF
    This paper presents practical enhancements of the operational space formulation (OSF) to exploit inequality constraints for whole-body control of a high degree of freedom robot with a floating base and multiple contacts, such as humanoids. A task-oriented optimisation method is developed to obtain a feasible torque resolution solely for task variables based on the OSF, which effectively reduces the number of optimisation variables. Interestingly, the proposed scheme amends assigned tasks on demand of satisfying inequality conditions, while dynamic consistency among contact-constrained tasks is preserved. In addition, we propose an efficient algorithm structure ameliorating real-time control capability which has been a major hurdle to transplant optimisation methods into the OSF-based whole-body control framework. Control performance, the feasibility of the optimised solution, and the computation time of the proposed control framework are verified through realistic dynamic simulations of a humanoid. We also clarify the pros and cons of the proposed method compared with existing optimisation-based ones, which may offer an insight for practical control engineers to select whole-body controllers necessitated from the desired application

    Neural Network-Based Joint Velocity Estimation Method for Improving Robot Control Performance

    No full text
    Joint velocity estimation is one of the essential properties that implement for accurate robot motion control. Although conventional approaches such as numerical differentiation of position measurements and model-based observers exhibit feasible performance for velocity estimation, instability can be occurred because of phase lag or model inaccuracy. This study proposes a model-free approach that can estimate the velocity with less phase lag by batch training of a neural network with pre-collected encoder measurements. By learning a weighted moving average, the proposed method successfully estimates the velocity with less latency imposed by the noise attenuation compared to the conventional methods. Practical experiments with two robot platforms with high degrees of freedom are conducted to validate the effectiveness of the proposed method

    Continuous Task Transition Approach for Robot Controller based on Hierarchical Quadratic Programming

    No full text
    International audienceThe robots with high Degrees of Freedom (DoF) such as humanoids and mobile manipulators are expected to perform multiple tasks simultaneously. Hierarchical Quadratic Programming (HQP) can effectively compute a solution for strictly prioritized tasks. However, the continuity of control input is not guaranteed when the priorities of the tasks are modified during operation. This paper proposes a continuous task transition method for HQP based controller to insert, remove, and swap arbitrary tasks without discontinuity. Smooth task transition is assured because our approach uses activation parameters of the new and existing tasks without modifying control structure. The proposed approach is applied to various task transition scenarios including joint limit, singularity, and obstacle avoidance to guarantee the stable execution of the robot. The proposed control scheme was implemented on a 7-DoF robotic arm, and its performance was demonstrated by the continuity of control input during various task transition scenarios
    corecore