38 research outputs found

    Regional soil erosion assessment based on a sample survey and geostatistics

    Get PDF
    Soil erosion is one of the most significant environmental problems in China. From 2010 to 2012, the fourth national census for soil erosion sampled 32 364 PSUs (Primary Sampling Units, small watersheds) with the areas of 0.2–3 km2. Land use and soil erosion controlling factors including rainfall erosivity, soil erodibility, slope length, slope steepness, biological practice, engineering practice, and tillage practice for the PSUs were surveyed, and the soil loss rate for each land use in the PSUs was estimated using an empirical model, the Chinese Soil Loss Equation (CSLE). Though the information collected from the sample units can be aggregated to estimate soil erosion conditions on a large scale; the problem of estimating soil erosion condition on a regional scale has not been addressed well. The aim of this study is to introduce a new model-based regional soil erosion assessment method combining a sample survey and geostatistics. We compared seven spatial interpolation models based on the bivariate penalized spline over triangulation (BPST) method to generate a regional soil erosion assessment from the PSUs. Shaanxi Province (3116 PSUs) in China was selected for the comparison and assessment as it is one of the areas with the most serious erosion problem. Ten-fold cross-validation based on the PSU data showed the model assisted by the land use, rainfall erosivity factor (R), soil erodibility factor (K), slope steepness factor (S), and slope length factor (L) derived from a 1 : 10 000 topography map is the best one, with the model efficiency coefficient (ME) being 0.75 and the MSE being 55.8 % of that for the model assisted by the land use alone. Among four erosion factors as the covariates, the S factor contributed the most information, followed by K and L factors, and R factor made almost no contribution to the spatial estimation of soil loss. The LS factor derived from 30 or 90 m Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data worsened the estimation when used as the covariates for the interpolation of soil loss. Due to the unavailability of a 1 : 10 000 topography map for the entire area in this study, the model assisted by the land use, R, and K factors, with a resolution of 250 m, was used to generate the regional assessment of the soil erosion for Shaanxi Province. It demonstrated that 54.3 % of total land in Shaanxi Province had annual soil loss equal to or greater than 5 t ha−1 yr−1. High (20–40 t ha−1 yr−1), severe (40–80 t ha−1 yr−1), and extreme ( \u3e  80 t ha−1 yr−1) erosion occupied 14.0 % of the total land. The dry land and irrigated land, forest, shrubland, and grassland in Shaanxi Province had mean soil loss rates of 21.77, 3.51, 10.00, and 7.27 t ha−1 yr−1, respectively. Annual soil loss was about 207.3 Mt in Shaanxi Province, with 68.9 % of soil loss originating from the farmlands and grasslands in Yan\u27an and Yulin districts in the northern Loess Plateau region and Ankang and Hanzhong districts in the southern Qingba mountainous region. This methodology provides a more accurate regional soil erosion assessment and can help policymakers to take effective measures to mediate soil erosion risks

    Development and external validation of a prognostic multivariable model on admission for hospitalized patients with COVID-19

    Get PDF
    Summary Background COVID-19 pandemic has developed rapidly and the ability to stratify the most vulnerable patients is vital. However, routinely used severity scoring systems are often low on diagnosis, even in non-survivors. Therefore, clinical prediction models for mortality are urgently required. Methods We developed and internally validated a multivariable logistic regression model to predict inpatient mortality in COVID-19 positive patients using data collected retrospectively from Tongji Hospital, Wuhan (299 patients). External validation was conducted using a retrospective cohort from Jinyintan Hospital, Wuhan (145 patients). Nine variables commonly measured in these acute settings were considered for model development, including age, biomarkers and comorbidities. Backwards stepwise selection and bootstrap resampling were used for model development and internal validation. We assessed discrimination via the C statistic, and calibration using calibration-in-the-large, calibration slopes and plots. Findings The final model included age, lymphocyte count, lactate dehydrogenase and SpO 2 as independent predictors of mortality. Discrimination of the model was excellent in both internal (c=0·89) and external (c=0·98) validation. Internal calibration was excellent (calibration slope=1). External validation showed some over-prediction of risk in low-risk individuals and under-prediction of risk in high-risk individuals prior to recalibration. Recalibration of the intercept and slope led to excellent performance of the model in independent data. Interpretation COVID-19 is a new disease and behaves differently from common critical illnesses. This study provides a new prediction model to identify patients with lethal COVID-19. Its practical reliance on commonly available parameters should improve usage of limited healthcare resources and patient survival rate. Funding This study was supported by following funding: Key Research and Development Plan of Jiangsu Province (BE2018743 and BE2019749), National Institute for Health Research (NIHR) (PDF-2018-11-ST2-006), British Heart Foundation (BHF) (PG/16/65/32313) and Liverpool University Hospitals NHS Foundation Trust in UK. Research in context Evidence before this study Since the outbreak of COVID-19, there has been a pressing need for development of a prognostic tool that is easy for clinicians to use. Recently, a Lancet publication showed that in a cohort of 191 patients with COVID-19, age, SOFA score and D-dimer measurements were associated with mortality. No other publication involving prognostic factors or models has been identified to date. Added value of this study In our cohorts of 444 patients from two hospitals, SOFA scores were low in the majority of patients on admission. The relevance of D-dimer could not be verified, as it is not included in routine laboratory tests. In this study, we have established a multivariable clinical prediction model using a development cohort of 299 patients from one hospital. After backwards selection, four variables, including age, lymphocyte count, lactate dehydrogenase and SpO 2 remained in the model to predict mortality. This has been validated internally and externally with a cohort of 145 patients from a different hospital. Discrimination of the model was excellent in both internal (c=0·89) and external (c=0·98) validation. Calibration plots showed excellent agreement between predicted and observed probabilities of mortality after recalibration of the model to account for underlying differences in the risk profile of the datasets. This demonstrated that the model is able to make reliable predictions in patients from different hospitals. In addition, these variables agree with pathological mechanisms and the model is easy to use in all types of clinical settings. Implication of all the available evidence After further external validation in different countries the model will enable better risk stratification and more targeted management of patients with COVID-19. With the nomogram, this model that is based on readily available parameters can help clinicians to stratify COVID-19 patients on diagnosis to use limited healthcare resources effectively and improve patient outcome

    High intensity interval training and health outcomes : a systematic review

    No full text
    published_or_final_versionPublic HealthMasterMaster of Public Healt

    Highly Sensitive p + n Metal Oxide Sensor Array for Low-Concentration Gas Detection

    No full text
    Nowadays, despite the easy fabrication and low cost of metal oxide gas sensors, it is still challenging for them to detect gases at low concentrations. In this study, resistance-matched p-type Cu2O and n-type Ga-doped ZnO, as well as p-type CdO/LaFeO3 and n-type CdO/Sn-doped ZnO sensors were prepared and integrated into p + n sensor arrays to enhance their gas-sensing performance. The materials were characterized by scanning electron microscopy, transmittance electron microscopy, and X-ray diffractometry, and gas-sensing properties were measured using ethanol and acetone as probes. The results showed that compared with individual gas sensors, the response of the sensor array was greatly enhanced and similar to the gas response product of the p- and n-type gas sensors. Specifically, the highly sensitive CdO/LaFeO3 and CdO/Sn-ZnO sensor array had a high response of 21 to 1 ppm ethanol and 14 to 1 ppm acetone, with detection limits of <0.1 ppm. The results show the effect of sensor array integration by matching the two sensor resistances, facilitating the detection of gas at a low concentration

    Optimization Design of Velocity Distribution in the Airways of the Fluidized Bed Based on CFD and Taguchi Algorithm

    No full text
    A vital component that is frequently employed in the industrial powder conveying sector is the fluidized bed. In the light of powder unloading with a fluidized bed as the research object, an orthogonal experiment with two factors and four levels was established for the structural parameters of the fluidized bed. In the case of different noise factors, 16 schemes are designed and all schemes via computational fluid dynamics numerical simulation. The Taguchi method and regression analysis are used to analyze the response. Finally, the accuracy of the optimization results is tested. The results show that gas velocity decreases sharply at the airway’s entrance and, then, gas flows to the second half of the airway and velocity decreases steadily and uniformly. Airway arc length L exerts a greater effect on the signal-to-noise ratio (SNR) than airway height H. The parameter combination of 180 mm L and 17 mm H for obtaining the optimal velocity distribution uniformity is determined. The test results indicate that the overall fluidization effect of the fluidized bed with the optimal parameters is better. The linked research findings can be used as a guide when designing a fluidized bed system for transporting comparable powder

    Fig 1 -

    No full text
    Examples of demonstration phases (A and B) and execution phases (C and D) from the cognitive and spatial tasks. For both tasks, there are three possible ways to learn the sequence (Hand, Ghost, and Text). In the Hand condition, a small video in the center of the display shows the hand of a person performing the sequence; in the Ghost condition, the sequence is indicated by the movement of the blue square frame and disappearance of each picture; and in the Text condition, the rules are shown in English words which disappear. There is only one possible way to execute the sequence—by selecting each item using the joystick (C and D). For both cognitive and spatial sequences, only the execution trials which follow a Hand demonstration are classed as imitation. However, only in the spatial task could participants’ joystick responses correspond with those observed, as pictures’ spatial arrangement was constant. In the cognitive task, because picture location varied randomly, so did joystick responses. (C) Example of the display during the execution phase of the cognitive task (i.e., all response screens after any demonstration type in the cognitive task could look like this, but with image content determined by the preceding demonstration phase). The three items appear in different locations and the participant must use the joystick to select each in turn so they disappear. (D) Example of the display during the execution phase of the spatial task.</p
    corecore