34 research outputs found

    An IoT-Based Framework of Webvr Visualization for Medical Big Data in Connected Health

    Get PDF
    Recently, telemedicine has been widely applied in remote diagnosis, treatment and counseling, where the Internet of Things (IoT) technology plays an important role. In the process of telemedicine, data are collected from remote medical equipment, such as CT machine and MRI machine, and then transmitted and reconstructed locally in three-dimensions. Due to the large amount of data to be transmitted in the reconstructed model and the small storage capacity, data need to be compressed progressively before transmission. On this basis, we proposed a lightweight progressive transmission algorithm based on large data visualization in telemedicine to improve transmission efficiency and achieve lossless transmission of original data. Moreover, a novel four-layer system architecture based on IoT has been introduced, including the sensing layer, analysis layer, network layer and application layer. In this way, the three-dimensional reconstructed data at the local end is compressed and transmitted to the remote end, and then visualized at the remote end to show reconstructed 3D models. Thus, it is conducive to doctors in remote real-time diagnosis and treatment, and then realize the data processing and transmission between doctors, patients and medical equipment

    Patient-Specific Coronary Artery 3D Printing Based on Intravascular Optical Coherence Tomography and Coronary Angiography

    Get PDF
    Despite the new ideas were inspired in medical treatment by the rapid advancement of three-dimensional (3D) printing technology, there is still rare research work reported on 3D printing of coronary arteries being documented in the literature. In this work, the application value of 3D printing technology in the treatment of cardiovascular diseases has been explored via comparison study between the 3D printed vascular solid model and the computer aided design (CAD) model. In this paper, a new framework is proposed to achieve a 3D printing vascular model with high simulation. The patient-specific 3D reconstruction of the coronary arteries is performed by the detailed morphological information abstracted from the contour of the vessel lumen. In the process of reconstruction which has 5 steps, the morphological details of the contour view of the vessel lumen are merged along with the curvature and length information provided by the coronary angiography. After comparing with the diameter of the narrow section and the diameter of the normal section in CAD models and 3D printing model, it can be concluded that there is a high correlation between the diameter of vascular stenosis measured in 3D printing models and computer aided design models. The 3D printing model has high-modeling ability and high precision, which can represent the original coronary artery appearance accurately. It can be adapted for prevascularization planning to support doctors in determining the surgical procedures

    Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome

    Get PDF
    INTRODUCTION Although much effort has been devoted to studying yeast in the past few decades, our understanding of this model organism is still limited. Rapidly developing DNA synthesis techniques have made a “build-to-understand” approach feasible to reengineer on the genome scale. Here, we report on the completion of a 770-kilobase synthetic yeast chromosome II (synII). SynII was characterized using extensive Trans-Omics tests. Despite considerable sequence alterations, synII is virtually indistinguishable from wild type. However, an up-regulation of translational machinery was observed and can be reversed by restoring the transfer RNA (tRNA) gene copy number. RATIONALE Following the “design-build-test-debug” working loop, synII was successfully designed and constructed in vivo. Extensive Trans-Omics tests were conducted, including phenomics, transcriptomics, proteomics, metabolomics, chromosome segregation, and replication analyses. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP -mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium. RESULTS To efficiently construct megabase-long chromosomes, we developed an I- Sce I–mediated strategy, which enables parallel integration of synthetic chromosome arms and reduced the overall integration time by 50% for synII. An I- Sce I site is introduced for generating a double-strand break to promote targeted homologous recombination during mitotic growth. Despite hundreds of modifications introduced, there are still regions sharing substantial sequence similarity that might lead to undesirable meiotic recombinations when intercrossing the two semisynthetic chromosome arm strains. Induction of the I- Sce I–mediated double-strand break is otherwise lethal and thus introduced a strong selective pressure for targeted homologous recombination. Since our strategy is designed to generate a markerless synII and leave the URA3 marker on the wild-type chromosome, we observed a tenfold increase in URA3 -deficient colonies upon I- Sce I induction, meaning that our strategy can greatly bias the crossover events toward the designated regions. By incorporating comprehensive phenotyping approaches at multiple levels, we demonstrated that synII was capable of powering the growth of yeast indistinguishably from wild-type cells (see the figure), showing highly consistent biological processes comparable to the native strain. Meanwhile, we also noticed modest but potentially significant up-regulation of the translational machinery. The main alteration underlying this change in expression is the deletion of 13 tRNA genes. A growth defect was observed in one very specific condition—high temperature (37°C) in medium with glycerol as a carbon source—where colony size was reduced significantly. We targeted and debugged this defect by two distinct approaches. The first approach involved phenotype screening of all intermediate strains followed by a complementation assay with wild-type sequences in the synthetic strain. By doing so, we identified a modification resulting from PCRTag recoding in TSC10 , which is involved in regulation of the yeast high-osmolarity glycerol (HOG) response pathway. After replacement with wild-type TSC10 , the defect was greatly mitigated. The other approach, debugging by SCRaMbLE, showed rearrangements in regions containing HOG regulation genes. Both approaches indicated that the defect is related to HOG response dysregulation. Thus, the phenotypic defect can be pinpointed and debugged through multiple alternative routes in the complex cellular interactome network. CONCLUSION We have demonstrated that synII segregates, replicates, and functions in a highly similar fashion compared with its wild-type counterpart. Furthermore, we believe that the iterative “design-build-test-debug” cycle methodology, established here, will facilitate progression of the Sc2.0 project in the face of the increasing synthetic genome complexity. SynII characterization. ( A ) Cell cycle comparison between synII and BY4741 revealed by the percentage of cells with separated CEN2-GFP dots, metaphase spindles, and anaphase spindles. ( B ) Replication profiling of synII (red) and BY4741 (black) expressed as relative copy number by deep sequencing. ( C ) RNA sequencing analysis revealed that the significant up-regulation of translational machinery in synII is induced by the deletion of tRNA genes in synII. </jats:sec

    Predictive effect of peripheral blood system inflammation indicators on acute asthma attacks in children

    No full text
    Objective To explore the value of peripheral blood system inflammation indicators such as neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), and systemic immune inflammation index (SII) in predicting the acute attack and severity of asthma in children. Methods Eighty children with acute exacerbation of asthma diagnosed in the Department of Pediatrics of Huai'an First People's Hospital from January 2020 to August 2022 were retrospectively selected as the asthma group, including 39 severe and critically ill children as the severe group, 41 mild to moderate children as the non-severe group, and 60 healthy children in the same period were selected as the control group. The peripheral blood cell count was detected, and NLR, PLR and SII were calculated. ROC curve was used to analyze the predictive value of each index for acute attack and severe attack of asthma. Results Compared with the control group, the levels of NLR (Z=5.678, P<0.01=, PLR (Z=2.889, P<0.01= and SII (Z=5.343, P<0.01= in the asthma group were higher. NLR (Z=3.393, P<0.01=, PLR (Z=2.787, P<0.01= and SII (Z=3.489, P<0.01= levels in severe group were higher than those in non-severe group. ROC curve analysis showed that the AUC of NLR, PLR and SII in predicting acute attack of asthma were 0.781 (95%CI: 0.705-0.853, P<0.01=, 0.643 (95%CI: 0.551-0.735, P<0.01=and 0.764 (95%CI: 0.685-0.843, P<0.01=, respectively. The AUC of NLR was the highest, with sensitivity and specificity of 68.8% and 76.7% respectively. The AUC of NLR, PLR and SII in predicting acute severe asthma attack were 0.720 (95%CI: 0.608-0.833, P<0.01), 0.681 (95%CI: 0.559-0.803, P<0.01) and 0.727(95%CI: 0.615-0.838, P<0.01), respectively. The AUC of SII was the highest, with sensitivity and specificity of 61.5% and 80.5% respectively. Conclusion NLR, PLR and SII in peripheral blood have certain predictive value for acute attack and severe attack of asthma in children

    Divergence of Liver Lipidomes in Tibetan and Yorkshire Pigs Living at Different Altitudes

    No full text
    The Tibetan pig is a characteristic breed of the Qinghai-Tibet Plateau with distinct physiological and meat quality attributes. The liver lipid profile can offer an important perspective to explore the uniqueness of Tibetan pigs. A quantitative comparison of liver lipidomes revealed significant differences in the lipid profiles between Tibetan and Yorkshire pigs raised at different altitudes. The abundance of lipids in the livers of pigs raised at a high altitude was higher than that of pigs raised at a lower altitude, whereas the abundance of lipids in the livers of Yorkshire pigs was higher than that of Tibetan pigs raised at the same altitude. Of the 1101 lipids identified, 323 and 193 differentially abundant lipids (DALs) were identified in the pairwise comparisons of Tibetan and Yorkshire pigs raised at different altitudes, respectively. The DALs of Tibetan pigs consisted mainly of 161 triglycerides, along with several acylcarnitines, represented by carnitine C2:0, and significant changes in the abundance of some phospholipids. The DALs of Yorkshire pigs were more complex, with significant increases in the abundance of triglycerides, cholesteryl esters, and free fatty acids, and decreases in the abundance of some phospholipids. This research provides strong theoretical and data support for the high-quality development of the highland livestock industry

    Research Note: Integrated proteomic analyses of chicken egg yolk granule

    No full text
    ABSTRACT: Chicken egg yolk granules (EYG) were the precipitated component of egg yolk after water dilution and centrifugation. Compared with egg yolk, EYG are rich in proteins, phospholipids, and minerals. In this study, an integrated proteomic analysis was carried out to in-depth mapping of the proteome, phosphoproteome, and N-glycoproteome of EYGs. After hydrolysis of the EYG total protein, the hydrolyzed peptides or the enriched phosphopeptides/glycopeptides were identified by liquid chromatography-tandem mass spectrometry. A total of 125 phosphorylation sites from 36 phosphoproteins and 244 N-glycosylation sites from 100 N-glycoproteins were identified in EYG. All 3 vitellogenins (precursors of egg yolk high-density lipoprotein) were heavily phosphorylated and N-glycosylated, of which 37 phosphorylation sites and 32 N-glycosylation sites were identified on vitellogenins-2. A Total of 30 N-glycosylation sites were identified on apolipoprotein-B (precursor of egg yolk low-density lipoprotein), but no phosphorylation site was identified. These phosphorylation and N-glycosylation of EYG proteins provide new insights for understanding the assembly structure and functional characteristics of EYG, thus contributing to its development and utilization

    Direct Optimization of Evaluation Measures in Learning to Rank

    No full text
    Abstract One of the central issues in learning to rank for Information Retrieval (IR) is to develop algorithms that construct ranking models by directly optimizing evaluation measures used in information retrieval, such as Mean Average Precision (MAP) and Normalized Discounted Cumulative Gain (NDCG). In this paper, we aim to conduct a comprehensive study on the approach of directly optimizing evaluation measures in learning to rank for IR. We focus on the methods that minimize loss functions upper bounding the basic loss function defined on the IR measures. We first provide a general framework for the study, which is based on upper bound analysis and two types of upper bounds are discussed. Moreover, we make theoretical analysis the two types of upper bounds and show that we can derive new algorithms on the basis of this analysis and present two new algorithms called AdaRank and PermuRank. We make comparisons between direct optimization methods of AdaRank, PermuRank, and SVM map , using benchmark datasets. We also compare them with conventional methods of Ranking SVM and RankBoost. Experimental results show that the methods based on direct optimization of ranking measures can always outperform these conventional methods. However, no significant difference exists among the performances of the direct optimization methods themselves
    corecore