59 research outputs found
Efficient Parallel Split Learning over Resource-constrained Wireless Edge Networks
The increasingly deeper neural networks hinder the democratization of
privacy-enhancing distributed learning, such as federated learning (FL), to
resource-constrained devices. To overcome this challenge, in this paper, we
advocate the integration of edge computing paradigm and parallel split learning
(PSL), allowing multiple client devices to offload substantial training
workloads to an edge server via layer-wise model split. By observing that
existing PSL schemes incur excessive training latency and large volume of data
transmissions, we propose an innovative PSL framework, namely, efficient
parallel split learning (EPSL), to accelerate model training. To be specific,
EPSL parallelizes client-side model training and reduces the dimension of local
gradients for back propagation (BP) via last-layer gradient aggregation,
leading to a significant reduction in server-side training and communication
latency. Moreover, by considering the heterogeneous channel conditions and
computing capabilities at client devices, we jointly optimize subchannel
allocation, power control, and cut layer selection to minimize the per-round
latency. Simulation results show that the proposed EPSL framework significantly
decreases the training latency needed to achieve a target accuracy compared
with the state-of-the-art benchmarks, and the tailored resource management and
layer split strategy can considerably reduce latency than the counterpart
without optimization.Comment: 15 pages, 13 figure
Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities
Smart cities demand resources for rich immersive sensing, ubiquitous
communications, powerful computing, large storage, and high intelligence
(SCCSI) to support various kinds of applications, such as public safety,
connected and autonomous driving, smart and connected health, and smart living.
At the same time, it is widely recognized that vehicles such as autonomous
cars, equipped with significantly powerful SCCSI capabilities, will become
ubiquitous in future smart cities. By observing the convergence of these two
trends, this article advocates the use of vehicles to build a cost-effective
service network, called the Vehicle as a Service (VaaS) paradigm, where
vehicles empowered with SCCSI capability form a web of mobile servers and
communicators to provide SCCSI services in smart cities. Towards this
direction, we first examine the potential use cases in smart cities and
possible upgrades required for the transition from traditional vehicular ad hoc
networks (VANETs) to VaaS. Then, we will introduce the system architecture of
the VaaS paradigm and discuss how it can provide SCCSI services in future smart
cities, respectively. At last, we identify the open problems of this paradigm
and future research directions, including architectural design, service
provisioning, incentive design, and security & privacy. We expect that this
paper paves the way towards developing a cost-effective and sustainable
approach for building smart cities.Comment: 32 pages, 11 figure
High Platelet Levels Attenuate the Efficacy of Platinum-Based Treatment in Non-Small Cell Lung Cancer
Background/Aims: The correlation between platelet levels and clinical outcomes has received increasing attention, but it is not yet clear whether and how platelet levels affect the therapeutic response in non-small cell lung cancer (NSCLC). In the current study, we aimed to explore the role of platelet levels in responsive to platinum-based chemotherapy and investigated the underlying mechanism. Methods: We evaluated the possibility of platelet level as a biomarker for response to platinum-based therapy in NSCLC by retrospective analysis of NSCLC patients. Cell proliferation was evaluated using cell counter and flow cytometry. Cell capillary-like structures of HPMEC were estimated with ECMatrix. The effect of platelets on A549, H1299, and HPMEC apoptosis was measured by flow cytometry. A A549-bearing NOD/ SCID mice model was employed to determine whether platelets could counteract cisplatin-induced apoptosis in vivo. In vivo cell proliferation and apoptosis were evaluated with Ki-67 antibody and TUNEL staining respectively. The angiogenesis of tumor was estimated by CD31 microvessel density. The protein levels of Akt, Bad and Bcl-2 were assessed by western blot. To further examine platelet-driven effects of the chemotherapeutic response, we used platelet depletion and platelet transfusion in A549-bearing NOD/SCID mice. Results: Thrombocytosis at NSCLC diagnosis was associated with lower progression-free survival and median overall survival. Platelet levels before chemotherapy in the no response group were markedly higher than in the responsive group. Platelets rescued the inhibition of cell proliferation and angiogenesis and protected against cell apoptosis induced by cisplatin, platelets rescued cisplatin-induced apoptosis via the Akt/Bad/Bcl-2 signaling pathway under endoplasmic reticulum stress. Platelet transfusion decreased the therapeutic effect of cisplatin, while it was increased by platelet depletion. Conclusion: We confirmed an important anti-apoptosis mechanism mediated by platelets and found that platelets could counteract cisplatin-induced apoptosis. Reducing platelet levels or blocking platelet-based cytoprotection may represent new methods for improving the chemotherapeutic effect
Nadir CA-125 level as prognosis indicator of high-grade serous ovarian cancer
PURPOSE: The capacity of nadir CA-125 levels to predict the prognosis of epithelial ovarian cancer remains controversial. This study aimed to explore whether the nadir CA-125 serum levels could predict the durations of overall survival (OS) and progression free survival (PFS) in patients with high-grade serous ovarian cancer (HG-SOC) from the USA and PRC. MATERIALS AND METHODS: A total of 616 HG-SOC patients from the MD Anderson Cancer Center (MDACC, USA) between 1990 and 2011 were retrospectively analyzed. The results of 262 cases from the Jiangsu Institute of Cancer Research (JICR, PRC) between 1992 and 2011 were used to validate the MDACC data. The CA-125 immunohistochemistry assay was performed on 280 tissue specimens. The Cox proportional hazards model and the log-rank test were used to assess the associations between the clinicopathological characteristics and duration of survival. RESULTS: The nadir CA-125 level was an independent predictor of OS and PFS (p < 0.01 for both) in the MDACC patients. Lower nadir CA-125 levels (≤10 U/mL) were associated with longer OS and PFS (median: 61.2 and 16.8 months with 95% CI: 52.0–72.4 and 14.0–19.6 months, respectively) than their counterparts with shorter OS and PFS (median: 49.2 and 10.5 months with 95% CI: 41.7–56.7 and 6.9–14.1 months, respectively). The nadir CA-125 levels in JICR patients were similarly independent when predicting the OS and PFS (p < 0.01 for both). Nadir CA-125 levels less than or equal to 10 U/mL were associated with longer OS and PFS (median: 59.9 and 15.5 months with 95% CI: 49.7–70.1 and 10.6–20.4 months, respectively), as compared with those more than 10 U/mL (median: 42.0 and 9.0 months with 95% CI: 34.4–49.7 and 6.6–11.2 months, respectively). Baseline serum CA-125 levels, but not the CA-125 expression in tissues, were associated with the OS and PFS of HG-SOC patients in the MDACC and JICR groups. However, these values were not independent. Nadir CA-125 levels were not associated with the tumor burden based on second-look surgery (p = 0.09). Patients who achieved a pathologic complete response had longer OS and PFS (median: 73.7 and 20.7 months with 95% CI: 63.7–83.7 and 9.5–31.9 months, respectively) than those with residual tumors (median: 34.6 and 10.6 months with 95% CI: 6.9–62.3 and 4.9–16.3 months, respectively). CONCLUSIONS: The nadir CA-125 level was an independent predictor of OS and PFS in HG-SOC patients. Further prospective studies are required to clinically optimize the chances for a complete clinical response of HG-SOC cases with higher CA-125 levels (>10 U/mL) at the end of primary treatment
Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice
Pre-harvest sprouting (PHS) or vivipary in cereals is an important agronomic trait that results in significant economic loss. A considerable number of mutations that cause PHS have been identified in several species. However, relatively few viviparous mutants in rice (Oryza sativa L.) have been reported. To explore the mechanism of PHS in rice, we carried out an extensive genetic screening and identified 12 PHS mutants (phs). Based on their phenotypes, these phs mutants were classified into three groups. Here we characterize in detail one of these groups, which contains mutations in genes encoding major enzymes of the carotenoid biosynthesis pathway, including phytoene desaturase (OsPDS), ζ-carotene desaturase (OsZDS), carotenoid isomerase (OsCRTISO) and lycopene β-cyclase (β-OsLCY), which are essential for the biosynthesis of carotenoid precursors of ABA. As expected, the amount of ABA was reduced in all four phs mutants compared with that in the wild type. Chlorophyll fluorescence analysis revealed the occurrence of photoinhibition in the photosystem and decreased capacity for eliminating excess energy by thermal dissipation. The greatly increased activities of reactive oxygen species (ROS) scavenging enzymes, and reduced photosystem (PS) II core proteins CP43, CP47 and D1 in leaves of the Oscrtiso/phs3-1 mutant and OsLCY RNAi transgenic rice indicated that photo-oxidative damage occurred in PS II, consistent with the accumulation of ROS in these plants. These results suggest that the impairment of carotenoid biosynthesis causes photo-oxidation and ABA-deficiency phenotypes, of which the latter is a major factor controlling the PHS trait in rice
Insights into salt tolerance from the genome of Thellungiella salsuginea
Thellungiella salsuginea, a close relative of Arabidopsis, represents an extremophile model for abiotic stress tolerance studies. We present the draft sequence of the T. salsuginea genome, assembled based on ∼134-fold coverage to seven chromosomes with a coding capacity of at least 28,457 genes. This genome provides resources and evidence about the nature of defense mechanisms constituting the genetic basis underlying plant abiotic stress tolerance. Comparative genomics and experimental analyses identified genes related to cation transport, abscisic acid signaling, and wax production prominent in T. salsuginea as possible contributors to its success in stressful environments
Recommended from our members
A Genome Wide Association Study Identifies Common Variants Associated with Lipid Levels in the Chinese Population
Plasma lipid levels are important risk factors for cardiovascular disease and are influenced by genetic and environmental factors. Recent genome wide association studies (GWAS) have identified several lipid-associated loci, but these loci have been identified primarily in European populations. In order to identify genetic markers for lipid levels in a Chinese population and analyze the heterogeneity between Europeans and Asians, especially Chinese, we performed a meta-analysis of two genome wide association studies on four common lipid traits including total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL) and high-density lipoprotein cholesterol (HDL) in a Han Chinese population totaling 3,451 healthy subjects. Replication was performed in an additional 8,830 subjects of Han Chinese ethnicity. We replicated eight loci associated with lipid levels previously reported in a European population. The loci genome wide significantly associated with TC were near DOCK7, HMGCR and ABO; those genome wide significantly associated with TG were near APOA1/C3/A4/A5 and LPL; those genome wide significantly associated with LDL were near HMGCR, ABO and TOMM40; and those genome wide significantly associated with HDL were near LPL, LIPC and CETP. In addition, an additive genotype score of eight SNPs representing the eight loci that were found to be associated with lipid levels was associated with higher TC, TG and LDL levels (P = 5.52×10-16, 1.38×10-6 and 5.59×10-9, respectively). These findings suggest the cumulative effects of multiple genetic loci on plasma lipid levels. Comparisons with previous GWAS of lipids highlight heterogeneity in allele frequency and in effect size for some loci between Chinese and European populations. The results from our GWAS provided comprehensive and convincing evidence of the genetic determinants of plasma lipid levels in a Chinese population
- …