129 research outputs found

    Exploring Employment Intentions of College Students in Small and Medium-sized Cities against the Backdrop of High-Quality Economic Development: Taking Huai’an City as an Example

    Get PDF
    Against the backdrop of high-quality development of the national economy, the development of each city is also facing transformation and upgrading. Cities need high-quality development, and high-quality talents are the key. The problem of attracting high-quality talents in domestic small and medium-sized cities in high-quality development needs to be solved urgently. This paper takes Huai’an, a third-tier city in China, as an example, to understand the intentions and confusions of college students when they seek employment. The qualitative approach of semi-structured interviews is employed. The study finds that in small and medium-sized cities, factors hindering college students from staying in local cities for employment include that the intensity of the government in publicizing high-quality development has not reached to most college students, the guide courses in colleges and universities meet difficulties in the process of delivery, and college students' own career planning are not guided well. In response to the above problems, this paper puts forward suggestions such as strengthening the positive interaction between schools and college students, enhancing the publicity of high-quality urban development among college students, and closely integrating college students’ career guidance courses with local development. Quality development attracts more high-quality talents

    H∞ filter for flexure deformation and lever arm effect compensation in M/S INS integration

    Get PDF
    ABSTRACTOn ship, especially on large ship, the flexure deformation between Master (M)/Slave (S) Inertial Navigation System (INS) is a key factor which determines the accuracy of the integrated system of M/S INS. In engineering this flexure deformation will be increased with the added ship size. In the M/S INS integrated system, the attitude error between MINS and SINS cannot really reflect the misalignment angle change of SINS due to the flexure deformation. At the same time, the flexure deformation will bring the change of the lever arm size, which further induces the uncertainty of lever arm velocity, resulting in the velocity matching error. To solve this problem, a H∞ algorithm is proposed, in which the attitude and velocity matching error caused by deformation is considered as measurement noise with limited energy, and measurement noise will be restrained by the robustness of H∞ filter. Based on the classical “attitude plus velocity” matching method, the progress of M/S INS information fusion is simulated and compared by using three kinds of schemes, which are known and unknown flexure deformation with standard Kalman filter, and unknown flexure deformation with H∞ filter, respectively. Simulation results indicate that H∞ filter can effectively improve the accuracy of information fusion when flexure deformation is unknown but non-ignorable

    A survey on adaptive random testing

    Get PDF
    Random testing (RT) is a well-studied testing method that has been widely applied to the testing of many applications, including embedded software systems, SQL database systems, and Android applications. Adaptive random testing (ART) aims to enhance RT's failure-detection ability by more evenly spreading the test cases over the input domain. Since its introduction in 2001, there have been many contributions to the development of ART, including various approaches, implementations, assessment and evaluation methods, and applications. This paper provides a comprehensive survey on ART, classifying techniques, summarizing application areas, and analyzing experimental evaluations. This paper also addresses some misconceptions about ART, and identifies open research challenges to be further investigated in the future work

    Preliminary study on early diagnosis of Alzheimer’s disease in APP/PS1 transgenic mice using multimodal magnetic resonance imaging

    Get PDF
    Alzheimer’s disease (AD) has an insidious onset and lacks clear early diagnostic markers, and by the time overt dementia symptoms appear, the disease is already in the mid-to-late stages. The search for early diagnostic markers of AD may open a critical window for Alzheimer’s treatment and facilitate early intervention to slow the progression of AD. In this study, we aimed to explore the imaging markers for early diagnosis of AD through the combined application of structural magnetic resonance imaging (sMRI), resting-state functional magnetic resonance imaging (rs-fMRI), and 1H-magnetic resonance spectroscopy (1H-MRS) multimodal magnetic resonance imaging (MRI) techniques at the animal experimental level, with the aim to provide a certain reference for early clinical diagnosis of AD. First, sMRI scans were performed on 4-month-old amyloid beta precursor protein/presenilin 1 (APP/PS1) transgenic AD model mice and wild type mice of the same litter using a 7.0 T animal MRI scanner to analyze the differential brain regions with structural changes in the gray matter of the brain by voxel-based morphometry (VBM). Next, rs-fMRI scans were performed to analyze the differential brain regions between groups for local spontaneous brain activity and functional connectivity (FC) between brain regions. Finally, 1H-MRS scans were performed to quantify and analyze intergroup differences in the relative concentrations of different metabolites within regions of interest (cortex and hippocampus). Compared with wild type mice, the volume of the left hippocampus, and right olfactory bulb of APP/PS1 transgenic AD model mice were reduced, the functional activity of the bilateral hippocampus, right piriform cortex and right caudate putamen was reduced, the functional network connectivity of the hippocampus was impaired, and the relative content of N-acetylaspartate (NAA)in the hippocampus was decreased. In addition, this study found that imaging changes in olfactory-related brain regions were closely associated with AD diagnosis, and these findings may provide some reference for the early diagnosis of AD

    Rapid detection of Mycobacterium tuberculosis based on cyp141 via real-time fluorescence loop-mediated isothermal amplification (cyp141-RealAmp)

    Get PDF
    BackgroundThe rapid detection of Mycobacterium tuberculosis (MTB) is essential for controlling tuberculosis. Methods We designed a portable thermocycler-based real-time fluorescence loop-mediated isothermal amplification assay (cyp141-RealAmp) using six oligonucleotide primers derived from cyp141 to detect MTB. A combined number of 213 sputum samples (169 obtained from clinically diagnosed cases of pulmonary TB and 44 from a control group without tuberculosis) underwent Acid-fast bacillus (AFB) smear, culture, Xpert MTB/RIF assays, and cyp141-RealAmp assay. ResultsBy targeting MTB cyp141, this technique could detect as low as 10 copies/reaction within 30 min, and it was successfully rejected by other mycobacteria and other bacterial species tested. Of the 169 patients, there was no statistical difference between the detection rate of cyp141-RealAmp (92.90%, 95% CI: 89.03–96.07) and that of Xpert MTB/RIF (94.67%, 95% CI: 91.28–98.06) (P > 0.05), but both were statistically higher than that of culture (65.68%, 95% CI: 58.52–72.84) (P< 0.05) and AFB (57.40%, 95% CI: 49.94–64.86) (P< 0.05). Both cyp141-RealAmp and Xpert MTB/RIF had a specificity of 100%. Furthermore, a high concordance between cyp141-RealAmp and Xpert MTB/RIF was found (Kappa = 0.89).ConclusionThe cyp141-RealAmp assay was shown to be effective, responsive, and accurate in this study. This method offers a prospective strategy for the speedy and precise detection of MTB

    A Global Analysis of the Relationship Between Urbanization and Fatalities in Earthquake-Prone Areas

    Get PDF
    Urbanization can be a challenge and an opportunity for earthquake risk mitigation. However, little is known about the changes in exposure (for example, population and urban land) to earthquakes in the context of global urbanization, and their impacts on fatalities in earthquake-prone areas. We present a global analysis of the changes in population size and urban land area in earthquake-prone areas from 1990 to 2015, and their impacts on earthquake-related fatalities. We found that more than two thirds of population growth (or 70% of total population in 2015) and nearly three quarters of earthquake-related deaths (or 307,918 deaths) in global earthquake-prone areas occurred in developing countries with an urbanization ratio (percentage of urban population to total population) between 20 and 60%. Holding other factors constant, population size was significantly and positively associated with earthquake fatalities, while the area of urban land was negatively related. The results suggest that fatalities increase for areas where the urbanization ratio is low, but after a ratio between 40 and 50% occurs, earthquake fatalities decline. This finding suggests that the resistance of building and infrastructure is greater in countries with higher urbanization ratios and highlights the need for further investigation. Our quantitative analysis is extended into the future using Shared Socioeconomic Pathways to reveal that by 2050, more than 50% of the population increase in global earthquake-prone areas will take place in a few developing countries (Pakistan, India, Afghanistan, and Bangladesh) that are particularly vulnerable to earthquakes. To reduce earthquake-induced fatalities, enhanced resilience of buildings and urban infrastructure generally in these few countries should be a priority

    Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference

    Get PDF
    AbstractThe severe acute respiratory syndrome (SARS) has been one of the most epidemic diseases threatening human health all over the world. Based on clinical studies, SARS-CoV (the SARS-associated coronavirus), a novel coronavirus, is reported as the pathogen responsible for the disease. To date, no effective and specific therapeutic method can be used to treat patients suffering from SARS-CoV infection. RNA interference (RNAi) is a process by which the introduced small interfering RNA (siRNA) could cause the degradation of mRNA with identical sequence specificity. The RNAi methodology has been used as a tool to silence genes in cultured cells and in animals. Recently, this technique was employed in anti-virus infections in human immunodeficiency virus and hepatitis C/B virus. In this study, RNAi technology has been applied to explore the possibility for prevention of SARS-CoV infection. We constructed specific siRNAs targeting the S gene in SARS-CoV. We demonstrated that the siRNAs could effectively and specifically inhibit gene expression of Spike protein in SARS-CoV-infected cells. Our study provided evidence that RNAi could be a tool for inhibition of SARS-CoV

    The relationships between emerging adults self-efficacy and motivation levels and physical activity: a cross-sectional study based on the self-determination theory

    Get PDF
    ObjectivesThe study aims to examine the associations between exercise self-efficacy, motivation, physical activity, and body composition among emerging adults.DesignCross-sectional.MethodsA convenience sample of 147 emerging adults participated in the Releasing Weight (RELEW) project. The InBody720 analyzer was used to measure body composition, and the International Physical Activity Questionnaire-Short, the Shortened Physical Activity Self-Efficacy Scale, and the Treatment Self-Regulation Questionnaire were used to measure self-reported physical activity, self-efficacy, and motivation. Structural Equation Modeling was used to exam the complex relationships among multiple variables. in this study. The Partial least squares structural equation modeling analysis with bootstrapping in Smart PLS 3 was employed to explore the path coefficients and t-values for the relationships that were thought to exist. Significance was determined using a threshold of p < 0.05.ResultsThe mean age of 147 participants was 18.5 ± 1.87, of whom 51.7% were female, recruited for this study. Exercise self-efficacy has a significant positive correlation with exercise motivation (r = 0.220, p = 0.008) and physical activity (r = 0.279, p < 0.001). Exercise motivation does not demonstrate significant associations with physical activity (r = 0.094, p = 0.298). Utilizing SEM, the model explained 9.2% of exercise self-efficacy, 11.8% of physical activity, and 68.3% of body composition variance. Mediation analysis revealed that exercise self-efficacy partially mediated the relationship between exercise motivation and physical activity (β = 0.106, t = 2.538, p < 0.05), and physical activity partially mediated the relationship between exercise self-efficacy and body composition (β = −0.296, t = 4.280, p < 0.001).ConclusionThis study sheds light on the complex relationships among motivation, self-efficacy, physical activity and body composition during emerging adulthood. Our results highlight the mediating role of self-efficacy and its impact on physical activity behaviors, offering valuable insights for targeted interventions and policy development to improve health outcomes in this demographic

    Generation of a Urine-Derived Ips Cell Line from a Patient with a Ventricular Septal Defect and Heart Failure and the Robust Differentiation of These Cells to Cardiomyocytes via Small Molecules

    Get PDF
    Background/Aims: Ventricular septal defects (VSDs) are one of the most common types of congenital heart malformations. Volume overload resulting from large VSDs can lead to heart failure (HF) and constitutes a major cause of pediatric HF with a series of often-fatal consequences. The etiology of VSD with HF is complex, and increasing evidence points toward a genetic basis. Indeed, we identified an L2483R mutation in the ryanodine receptor type 2 (RyR2) in a 2-month-old male patient with VSD with HF. Methods: We generated integration-free induced pluripotent stem cells from urine samples (UiPSCs) of this patient using Sendai virus containing the Yamanaka factors and characterized these cells based on alkaline phosphatase activity, pluripotency marker expression, and teratoma formation. Then, we induced the derived UiPSCs to rapidly and efficiently differentiate into functional cardiomyocytes through temporal modulation of canonical Wnt signaling with small molecules. Real-time PCR and immunofluorescence were used to verify the expression of myocardium-specific markers in the differentiated cardiomyocytes. The ultrastructure of the derived myocardial cells was further analyzed by using transmission electron microscopy. Results: The established UiPSC lines were positive for alkaline phosphatase activity, retained the RyR2 mutation, expressed pluripotency markers, and displayed differentiation potential to three germ layers in vivo. The UiPSC-derived cells showed hallmarks of cardiomyocytes, including spontaneous contraction and strong expression of cardiac-specific proteins and genes. However, compared with cardiomyocytes derived from H9 cells, they had a higher level of autophagy, implying that autophagy may play an important role in the development of VSD with HF. Conclusion: The protocol described here yields abundant myocardial cells and provides a solid platform for further investigation of the pathogenesis, pharmacotherapy, and gene therapy of VSD with HF
    corecore