376 research outputs found

    Etudes de la croissance anisotrope de ZnO synthétisés par une méthode organométallique et étude cinétique de la gélification concomitante

    Get PDF
    Aujourd'hui, les nanosciences sont définies comme l'étude des structures (moléculaires) et dispositifs dont au moins une des dimensions caractéristiques se situe 1 - 100 nm. Ces nanomatériaux agissant comme des ponts entre les matériaux massifs et les structures atomiques et démontrent de nombreuses modifications dans les propriétés physiques, chimiques ou biologiques en raison de la taille réduite. Les nanomatériaux composés d'oxydes métalliques sont un tel type de matériaux intéressants. Leurs caractéristiques sont très intéressantes pour le développement d'applications électroniques, optiques, de capteurs et autres. Pour certains des oxydes métalliques, un manque d'oxygène crée des vacances agissant comme donneur d'électrons et induisant des propriétés de semi-conducteurs de type n. ZnO est un exemple typique. Il est caractérisé par une large bande interdite d'environ 3.4 eV, une énergie grande exciton de 60 meV, une grande mobilité électronique et une luminescence dans le visible et le proche ultraviolet. Ces caractéristiques électroniques en font un bon candidat pour le développement de sources d'émission lumineuse et de détecteurs. Il a été ainsi montré que ZnO pouvait, selon les conditions de préparation, émettre dans l'ultraviolet, le violet, le vert, le jaune et même le rouge. Ces propriétés optiques de ZnO dépendent fortement de la morphologie des matériaux. Dans le travail précédent, une méthode mature de synthèse des nanomatériaux ZnO a été développée - la méthode organométallique. Les nano ZnO bien définis avec différentes tailles, formes et morphologies (isotrope, anisotrope) peuvent être obtenus en changeant différents paramètres (milieu de réaction, types de ligands ou de surfactants, température, temps d'incubation, etc.). Cependant, lorsque des amines primaires sont utilisées comme ligands, le mécanisme de la croissance anisotrope n'est toujours pas clair. Les influences des amines secondaires et tertiaires sur nano ZnO obtenus ne sont pas encore dévoilées. Ainsi, la thèse s'attache tout d'abord à étudier les deux points ci- dessus. Premièrement, nous utilisons la méthode d'analyse de tracé 2D et d'analyse statistique pour extraire les informations sur la taille des particules à partir des images TEM. Les données traitées suggèrent que le mécanisme de croissance anisotrope est le processus d'attachement orienté, et finalement entravé par un processus de gélification induit par l'interaction du Zn précurseur avec les aminés. Deuxièmement, nous adoptons une amine de même longueur de chaîne mais de structure différente comme tensioactif (amine primaire, secondaire et tertiaire) pour synthétiser les NCs de ZnO. Les analyses RMN et DFT ont démontré que la différence de morphologie entre les NCs de ZnO viens d'une forte différence dans leur dynamique à la surface des NCs en croissance. L'interaction des liaisons H multiples à la surface du ZnO pour les amines primaires, conduit à une mobilité réduite de ces amines par rapport aux amines secondaires, qui restent mobiles à la surface des NCs dans toutes les dimensions de l'espace. Cette thèse s'intèresse aussi à la gélification qui a été trouvée pendant la synthèse du ZnO. Il a été démontré qu'elle était associée à la formation d'oligomères. Cependant, pour comprendre sa force motrice et étudier la révolution des propriétés rhéologiques avec le temps, d'autres amines primaires avec une longueur de chaîne différente sont utilisées. Les résultats de RMN montrent que la force intermoléculaire (force de Van der Waals, réticulation) contribue à la vitesse de gélification et explique les différents temps de début de gélification. Plus la chaîne est longue, plus la gélification est rapide. La première est déterminée par la force de VdW, et la seconde est déterminée par la réticulation entre les oligomères formés. Les résultats de la mesure rhéologique ont montré que le gel était composé d'une phase organique tridimensionnelle.Nowadays, nanoscience is defined as the studies of structures (molecules) and devices, in which at least one characteristic size is between 1 nm and 100 nm. These nanomaterials act as a bridge between bulk materials and atomic structures, and show many changes in the properties of physical, chemical or biological properties due to the reduction of the size of these structures. Nano materials composed of metal oxides are such kind of interesting materials. Their characteristics are very interesting for the development of electronic, optical, sensor and other applications. For some metal oxides, oxygen deficit will produce vacancies, act as electron donors, and naturally induce the performance of n-type semiconductors. ZnO is a typical example. It has characters of wide band gap of about 3.4 ev, high electron hole interaction energy (60 meV), high electron mobility, visible and near ultraviolet luminescence. These electronic characteristics make it a good candidate for the development of light source and detector. Recent studies have shown ZnO can emit in ultraviolet, violet, green, yellow and even red according to the preparation conditions. These optical properties of ZnO are closely related to the morphology of the material. In the previous work, we first developed a mature synthesis method of ZnO nano materials with organometallic method. By changing different parameters (reaction medium, type of ligand or surfactant, temperature, incubation time, etc.), clear ZnO nano objects with different sizes, shapes and morphologies (isotropic and anisotropic) can be obtained. However, when primary amine is used as ligand, which is the factor controlling this anisotropic growth, the mechanism of anisotropic growth is not clear. The effects of secondary and tertiary amines on nano ZnO are not clear either. Therefore, this paper first studies the above two points. First, we use 2D-plot analysis and statistical analysis to extract particle size information from TEM images. The processed data showed the anisotropic growth mechanism is realized firstly through the orientated attachment process, then finally hindered by the gelation process induced by the interaction between Zn precursor and amino ligand. Second, ZnO NCs was synthesized by using amines with the same aliphatic chain length but different structures as surfactants (primary, secondary and tertiary amines). The interaction between these surfactants and ZnO NCs metal precursors in the whole synthesis process was revealed by the complementary analysis of NMR and DFT. The results show the morphology of ZnO NCs varies with the amine structure, which is due to the great difference of their kinetics on the surface of growing NCs. The interaction of multiple H bonds of primary amines on the surface of ZnO leads to the decrease of the mobility of these amines relative to secondary amines, and the secondary amines remain on the surface of NCs in all spatial dimensions. This thesis work also contains topic of gelation which is discovered during the synthesis of ZnO. It was found the gel formation was related to the formation of oligomers. However, in order to understand the driving force of gelation and study the evolution of gel rheological properties over time, we used primary amines with different fatty chain lengths to study their effects. The NMR results showed the intermolecular force (van der Waals force, crosslinking) had a certain effect on the gelation rate, and explained the different gel initiation time. The longer the chain, the faster the gelation. The results of the rheological measurement showed the gel was composed of three- dimensional organic phase

    Served as Social Actors or Instrumental Role? Understanding the Usage of Smart Product from the Dual Processing Perspective

    Get PDF
    Based on the Dual processing theory, this study proposes that customers form their decision of smart products usage through two paths of: emotional and functional, at the same time. These paths are related to two types of behavior modes: affect-oriented which reflects the emotional or psychological demands we need, and the task-oriented which reflects essential needs for us to make use of these products. The behavior modes, represented by anthropomorphism cues and functional cues respectively, influence different kinds of trust, affect-based and cognition-based, and then determine the usage of smart products. The results will be examine through data collection in the near future. And we hope that the results could unravel several important findings and bring some managerial implications for manufacturers to improve their products

    Computational Design of Wiring Layout on Tight Suits with Minimal Motion Resistance

    Full text link
    An increasing number of electronics are directly embedded on the clothing to monitor human status (e.g., skeletal motion) or provide haptic feedback. A specific challenge to prototype and fabricate such a clothing is to design the wiring layout, while minimizing the intervention to human motion. We address this challenge by formulating the topological optimization problem on the clothing surface as a deformation-weighted Steiner tree problem on a 3D clothing mesh. Our method proposed an energy function for minimizing strain energy in the wiring area under different motions, regularized by its total length. We built the physical prototype to verify the effectiveness of our method and conducted user study with participants of both design experts and smart cloth users. On three types of commercial products of smart clothing, the optimized layout design reduced wire strain energy by an average of 77% among 248 actions compared to baseline design, and 18% over the expert design.Comment: This work is accepted at SIGGRAPH ASIA 2023(Conference Track

    Antimicrobial Resistance, Virulence, and Genetic Characterization of Methicillin-Resistant Staphylococcus aureus Recovered from Ready-to-Eat (RTE) Food in China: A New Challenge for Food Safety

    Get PDF
    The objective of the present study was to determine the prevalence, antimicrobial resistance, virulence profiles, and molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) obtained from ready-to-eat (RTE) foods in China. Two hundred seventy-six RTE food-associated S. aureus isolates were collected from 25 provinces across China in 2018, then characterized by antimicrobial susceptibility testing, virulence factors detecting, multilocus sequence typing (MLST), spa typing, SCC mec typing and pulsed-field gel electrophoresis (PFGE). Two hundred fifty isolates (90.6%) were resistant to at least one antimicrobial agent; 73 (26.4%) isolates were multi-drug resistant (MDR). Thirty MRSA isolates were identified, among which nine toxin genes ( sea, seb, sec, sed, seh, selk, sell, selq , and tsst-1 ) were detected. Sixty percent (18/30) of the MRSA isolates harbored multiple toxin genes. Four virulence gene patterns were identified, with seb-selk-selq (30/30) being the most common pattern. Thirteen sequence types, as well as 13 spa and 4 SCC mec types were found among 30 MRSA isolates. The most prevalent MRSA lineages were CC59-t437-SCC mec IV/V (23.3% [7/30]), CC398-t011-SCC mec V (23.3% [7/30]), and CC1-t114-SCC mec IV (16.7% [5/30]). Our findings highlight the importance for the identification of prevalent clones, assessment of drug-resistance and virulence, and formulation of food safety measures for public health

    Gate-Tunable Critical Current of the Three-Dimensional Niobium Nano-Bridge Josephson Junction

    Full text link
    Recent studies have shown that the critical currents of several metallic superconducting nanowires and Dayem bridges can be locally tuned using a gate voltage {V_g}. Here, we report a gate-tunable Josephson junction structure constructed from a three-dimensional (3D) niobium nano-bridge junction (NBJ) with a voltage gate on top. Measurements up to 6 K showed that the critical current of this structure can be tuned to zero by increasing {V_g}. The critical gate voltage Vgc was reduced to 16 V and may possibly be reduced further by reducing the thickness of the insulation layer between the gate and the NBJ. Furthermore, the flux modulation generated by Josephson interference of two parallel 3D NBJs can also be tuned using {V_g} in a similar manner. Therefore, we believe that this gate-tunable Josephson junction structure is promising for superconducting circuit fabrication at high integration levels.Comment: 15 pages, 5 figure

    Helical Luttinger liquid on the edge of a 2-dimensional topological antiferromagnet

    Full text link
    Boundary helical Luttinger liquid (HLL) with broken bulk time-reversal symmetry belongs to a unique topological class which may occur in antiferromagnets (AFM). Here, we search for signatures of HLL on the edge of a recently discovered topological AFM, MnBi2Te4 even-layer. Using scanning superconducting quantum interference device, we directly image helical edge current in the AFM ground state appearing at its charge neutral point. Such helical edge state accompanies an insulating bulk which is topologically distinct from the ferromagnetic Chern insulator phase as revealed in a magnetic field driven quantum phase transition. The edge conductance of the AFM order follows a power-law as a function of temperature and source-drain bias which serves as strong evidence for HLL. Such HLL scaling is robust at finite fields below the quantum critical point. The observed HLL in a layered AFM semiconductor represents a highly tunable topological matter compatible with future spintronics and quantum computation
    corecore