4 research outputs found

    Synthesis and anticancer activities of diquinazoline diselenides compounds

    Get PDF
    A series of novel diquinazoline diselenide compounds was designed and synthesized with substituted 4-chloroquinazoline and sodium diselenide. Their structures were confirmed by IR, 1H NMR, 13C NMR, and elemental analyses.The antitumor activity of the new compounds was evaluated by MTT method. Compound 1a, 1c, 1h and 1i were found to have activities against MDA-MB-435, A549,MDA-MB-231, SiHa, and HeLa cells. Moreover, compared with the commercial anticancer drugs Gefitinib, Oxaliplatin,Taxol, 10-Hydroxycamptothec in, and Epirubicin Hydrochloride,1a exerted better antitumor effects on corresponding cell lines at 10 μM

    Antimicrobial Activity of Quinazolin Derivatives of 1,2-Di(quinazolin-4-yl)diselane against Mycobacteria

    Get PDF
    Mycobacterium tuberculosis (M. tuberculosis) is one of the leading causes of morbidity and mortality. Currently, the emergence of drug resistance has an urgent need for new drugs. In previous study, we found that 1,2-di(quinazolin-4-yl)diselane (DQYD), a quinazoline derivative, has anticancer activities against many cancers. However, whether DQYD has the activity of antimycobacterium is still little known. Here our results show that DQYD has a similar value of the minimum inhibitory concentration with clinical drugs against mycobacteria and also has the ability of bacteriostatic activity with dose-dependent and time-dependent manner. Furthermore, the activities of DQYD against M. tuberculosis are associated with intracellular ATP homeostasis. Meanwhile, mycobacterium DNA damage level was increased after DQYD treatment. But there was no correlation between survival of mycobacteria in the presence of DQYD and intercellular reactive oxygen species. This study enlightens the possible benefits of quinazoline derivatives as potential antimycobacterium compounds and furtherly suggests a new strategy to develop new methods for searching antituberculosis drugs
    corecore