249 research outputs found

    The Current Situation and Optimized path of Higher Education Development in the China and the Republic of Sudan under the Belt and Road Initiative

    Get PDF
    Since the Belt and Road Initiative was proposed in 2013, receiving abundantly enthusiastic as well as positive responses within the international community, especially the Arab countries along the Belt and Road, and including the Republic of Sudan in north-eastern Africa. Since the establishment of diplomatic relations between China and the Sudan 58 years ago, the two countries have achieved a series of achievements in the field of higher education. The mutual visits and exchanges between them are also gradually increasing. With the development of the times and the continuous deepening of bilateral relations, the cooperation and exchanges of higher education between the two countries are facing some new difficulties. The purpose of this article is to analyze these dilemmas and propose the optimized path for the development of Sino-Sudan higher education cooperation under the “Belt and Road” initiative

    A Pan-Sharpening Method Based on Evolutionary Optimization and IHS Transformation

    Get PDF
    In many remote sensing applications, users usually prefer a multispectral image with both high spectral and high spatial information. This high quality image could be obtained by pan-sharpening techniques which fuse a high resolution panchromatic (PAN) image and a low resolution multispectral (MS) image. In this paper, we propose a new technique to do so based on the adaptive intensity-hue-saturation (IHS) transformation model and evolutionary optimization. The basic idea is to reconstruct the target image through a parameterized adaptive IHS transformation. An optimization objective is thus introduced by considering the relations between the fused image and the original PAN and MS images. The control parameters are optimized by an evolutionary algorithm. Experimental results show that our new approach is practical and performs much better than some state-of-the-art techniques according to the performance metrics

    Vapor-liquid equilibrium properties of binary mixture refrigerants (R1234ZE+R290, R290+R227ea)

    Get PDF
    The vapor-liquid equilibrium data is an important part of thermophysical properties of a new refrigerant. Theoretical predictions and experimental measurements of vapor-liquid equilibrium data of a new mixed working fluid become to be an urgent need for the researches on alternative refrigerants. The vapor-liquid equilibrium curves of binary mixtures (R1234ze(E)+R290, R290+R227ea) were simulated by COSMO-RS model which are based on quantum chemistry. The simulation results could accord with the experimental data well. It was concluded that COSMO-RS simulation method is feasible to predict the vapor-liquid equilibrium properties of mixed refrigerants

    Structure and Activity of a Selective Antibiofilm Peptide SK-24 Derived from the NMR Structure of Human Cathelicidin LL-37

    Get PDF
    The deployment of the innate immune system in humans is essential to protect us from infection. Human cathelicidin LL-37 is a linear host defense peptide with both antimicrobial and immune modulatory properties. Despite years of studies of numerous peptides, SK-24, corresponding to the long hydrophobic domain (residues 9–32) in the anionic lipid-bound NMR structure of LL-37, has not been investigated. This study reports the structure and activity of SK-24. Interestingly, SK-24 is entirely helical (~100%) in phosphate buffer (PBS), more than LL-37 (84%), GI-20 (75%), and GF-17 (33%), while RI-10 and 17BIPHE2 are essentially randomly coiled (helix%: 7–10%). These results imply an important role for the additional N-terminal amino acids (likely E16) of SK-24 in stabilizing the helical conformation in PBS. It is proposed herein that SK-24 contains the minimal sequence for effective oligomerization of LL-37. Superior to LL-37 and RI-10, SK-24 shows an antimicrobial activity spectrum comparable to the major antimicrobial peptides GF-17 and GI-20 by targeting bacterial membranes and forming a helical conformation. Like the engineered peptide 17BIPHE2, SK-24 has a stronger antibiofilm activity than LL-37, GI-20, and GF-17. Nevertheless, SK-24 is least hemolytic at 200 µM compared with LL-37 and its other peptides investigated herein. Combined, these results enabled us to appreciate the elegance of the long amphipathic helix SK-24 nature deploys within LL-37 for human antimicrobial defense. SK-24 may be a useful template of therapeutic potentia

    Efficient Graph Neural Network Inference at Large Scale

    Full text link
    Graph neural networks (GNNs) have demonstrated excellent performance in a wide range of applications. However, the enormous size of large-scale graphs hinders their applications under real-time inference scenarios. Although existing scalable GNNs leverage linear propagation to preprocess the features and accelerate the training and inference procedure, these methods still suffer from scalability issues when making inferences on unseen nodes, as the feature preprocessing requires the graph is known and fixed. To speed up the inference in the inductive setting, we propose a novel adaptive propagation order approach that generates the personalized propagation order for each node based on its topological information. This could successfully avoid the redundant computation of feature propagation. Moreover, the trade-off between accuracy and inference latency can be flexibly controlled by simple hyper-parameters to match different latency constraints of application scenarios. To compensate for the potential inference accuracy loss, we further propose Inception Distillation to exploit the multi scale reception information and improve the inference performance. Extensive experiments are conducted on four public datasets with different scales and characteristics, and the experimental results show that our proposed inference acceleration framework outperforms the SOTA graph inference acceleration baselines in terms of both accuracy and efficiency. In particular, the advantage of our proposed method is more significant on larger-scale datasets, and our framework achieves 75×75\times inference speedup on the largest Ogbn-products dataset

    Potential therapeutic strategy for non-Hodgkin lymphoma by anti-CD20scFvFc/CD28/CD3zeta gene tranfected T cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anti-CD20 monoclonal antibody treatment has not only increased survival and cure rates in many non-Hodgkin lymphomas, but also has prompted an explosion in the development of novel antibodies and biologically active substances with specific cellular targets in the field of malignancies treatment. Since the robust immune responses are elicited by the gene-modified T cells, gene based T cell therapy may also provide a powerful tool for cancer immunotherapy.</p> <p>Methods</p> <p>In this study, we developed a vector construction encoding a chimeric T cell receptor that recognizes the CD20 antigen and delivers co-stimulatory signals to achieve T cell activation. One non-Hodgkin lymphoma cell line Raji cells co-cultured with peripheral blood-derived T cells were stably transfected with anti-CD20scFvFc/CD28/CD3zeta gene or anti-CD20scFvFc gene. T cells expressing anti-CD20scFvFc/CD28/CD3zeta or anti-CD20scFvFc gene co-cultured with CD20 positive Raji cells for different times. Cell lysis assay was carried by [<sup>3</sup>H]TdR release assay. The expressions of Fas, Bcl-2 and Caspase-3 of Raji cells were detected by flow cytometric. The secretion of IFN-gamma and IL-2 in co-culture medium was tested by ELISA assay. Activity of AP-1 was analyzed by EMSA.</p> <p>Results</p> <p>Following efficient transduction of peripheral blood-derived T cells with anti-CD20scFvFc/CD28/CD3zeta gene, an obvious cell lysis of Raji cells was observed in co-culture. T cells transduced anti-CD20scFvFc/CD28/CD3zeta gene had superior secretion of IFN-gamma and IL-2 compared to T cells transduced anti-CD20scFvFc gene. Also it led to a much stronger Fas-induced apoptosis signaling transduction in target cancer cells.</p> <p>Conclusion</p> <p>So adoptively T cells transduced anti-CD20scFvFc/CD28/CD3zeta gene mediates enhanced anti-tumor activities against CD20 positive tumor cells, suggesting a potential of gene-based immunotherapy for non-Hodgkin lymphoma.</p
    • …
    corecore