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In many remote sensing applications, users usually prefer a multispectral image with both high spectral and high spatial
information. This high quality image could be obtained by pan-sharpening techniques which fuse a high resolution panchromatic
(PAN) image and a low resolution multispectral (MS) image. In this paper, we propose a new technique to do so based on the
adaptive intensity-hue-saturation (IHS) transformation model and evolutionary optimization. The basic idea is to reconstruct the
target image through a parameterized adaptive IHS transformation. An optimization objective is thus introduced by considering the
relations between the fused image and the original PAN and MS images. The control parameters are optimized by an evolutionary
algorithm. Experimental results show that our new approach is practical and performs much better than some state-of-the-art
techniques according to the performance metrics.

1. Introduction

With the development of satellite technologies, many satel-
lites, such as IKONOS and QuickBird, provide two types
of images: the multispectral (MS) image and the panchro-
matic (PAN) image. The MS images are with high spectral
information but low spatial information; on the contrary,
the PAN images are with high spatial information but low
spectral information. However, in practice, users usually
prefer a single image with both high spectral and high spatial
information. This high quality synthetic image could be
reconstructed by the so-called pan-sharpening techniques
which fuse a high resolution PAN image and a corresponding
low resolution MS image.

In the last two decades, a variety of pan-sharpeningmeth-
ods as well as the performance metrics has been proposed.
Comprehensive surveys are referred to [1, 2]. In early stages,
the component-substitution (CS) methods, such as intensity-
hue-saturation (IHS) [3] and principal component analysis
(PCA) [4], inject spatial information from PAN image to
the MS image. In later stages, the multiresolution analysis
(MRA) based methods, such as wavelet and contourlet [5],

inject high-frequency details inferred from the PAN image
to the MS bands. Recently, the CS based and/or MRA based
methods are also hybridized [6, 7] or combined with other
techniques, such as evolutionary algorithms (EAs) [8] and
compressed sensing [9, 10], to get high spectral and spatial
performance.

Among different pan-sharpening methods, the wavelet
transform fusion method has good spectral information, but
the texture of the fused image is coarse and the detail is not
clear enough; the IHS transformation based method [3] is
popular due to its efficiency. However, the major limitations
of this method are obvious: (1) it can only handle MS image
with three bands and (2) the ISH transform fusion method
can improve the texture characteristics of the fused image
and enhance the detail information of the fused image, but
the spectral distortion is larger. A generalized IHS transform
has been proposed to overcome the former limitation [11]. By
using the intensity band to approximate the PAN image, some
adaptive IHS methods have been proposed to overcome the
latter limitation [12, 13].

Till now, due to the complexity of pan-sharpening, all of
the existing methods are more or less deficient. Especially
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Figure 1: The flowchart of the proposed method.

in the variational pan-sharpening methods, the assumptions
might not be very perfect. This naturally leads us to consider
some new assumptions from new perspectives and to build
a new model from them to obtain pan-sharpened images
more accurately and effectively. In this letter, we propose a
new pan-sharpening method based on both EA and adaptive
IHS [13] as shown in Figure 1. This method is based on
swarm intelligence algorithm and global optimization, the
algorithm uses ISH transform and fusion method to obtain
the fused image as the initial population and then the image
based on the quantitative evaluation index to construct the
objective function, finally using evolution algorithm to opti-
mize the objective function, so as to obtain the appropriate
image fusion results. Both experimental results and objective
evaluations show that the proposed algorithm is better than
conventional fusion methods such as wavelet transform and
ISH transform in expressing detailed information and fusing
quality parameters.

Our method targets finding an optimal fused multispec-
tral (𝐹) image by assuming that (1) the PAN image could be
a linear combination of the optimal synthetic image bands
and (2) the MS image could be degraded from the optimal
synthetic image. An optimization objective is thus introduced
based on the two concepts. An EA is used to optimize the
objective to get the optimal control parameters, and the
optimal synthetic image is reconstructed by using adaptive
IHS model with the optimal control parameters.

2. An Evolutionary Pan-Sharpening Method

Before fusing the two images, we upsample the original MS
image to make it with the same size as the PAN image. Let𝑀 = (𝑀1,𝑀2, . . . ,𝑀𝑐) (1)

be the preprocessed 𝑐-band MS image, 𝑀𝑐 is the 𝑐th band,
and a pixel at position (𝑥, 𝑦) of band 𝑐 is denoted as𝑀𝑐(𝑥, 𝑦).
Let 𝑃 denote the given PAN image and 𝐹 = (𝐹1, 𝐹2, . . . , 𝐹𝐶)
be the unknown fused synthetic multispectral image.

2.1. Adaptive IHS [13]. In adaptive IHS, the intensity (𝐼) band
is estimated as

𝐼 = ∑
𝑐

𝛼𝑐𝑀𝑐, (2)

where 1 ≥ 𝛼𝑐 ≥ 0, 𝑐 = 1, 2, . . . , 𝐶, are the unknown
coefficients. It is further assumed that the PAN image could
be approximated by the MS images; that is,𝑃 ≈ ∑

𝑐

𝛼𝑐𝑀𝑐. (3)

Therefore, the coefficients 𝛼 can be obtained by minimizing

𝐺 (𝛼) = ∑
𝑥,𝑦,𝑐

(𝛼𝑐𝑀𝑐 (𝑥, 𝑦) − 𝑃 (𝑥, 𝑦))2
+ 𝛾∑
𝑐

(max (0, −𝛼𝑐))2 , (4)

where 𝛾 is the Lagrange multiplier.
With the optimized coefficients 𝛼, the synthetic image is

reconstructed by𝐹𝑐 (𝑥, 𝑦) = 𝑀𝑐 (𝑥, 𝑦) + ℎ (𝑥, 𝑦) (𝑃 (𝑥, 𝑦) − 𝐼 (𝑥, 𝑦)) , (5)

for 𝑐 = 1, 2, . . . , 𝐶. ℎ(𝑥, 𝑦) is an edge detector defined as

ℎ (𝑥, 𝑦) = exp(− 𝜆󵄨󵄨󵄨󵄨∇𝑃 (𝑥, 𝑦)󵄨󵄨󵄨󵄨4 + 𝜀) , (6)

where 𝜆 = 10−9 and 𝜀 = 10−10 are two control parameters and∇𝑃(𝑥, 𝑦) is the gradient of the PAN image at (𝑥, 𝑦).
It is clear that, on the edges when ℎ(𝑥, 𝑦) → 1, the

spatial information from PAN image will be injected into the
synthetic image; otherwise, on the off edge when ℎ(𝑥, 𝑦) →0, 𝐹𝑐(𝑥, 𝑦) ≈ 𝑀𝑐(𝑥, 𝑦), which means that only the spectral
information from the MS image will be injected into the
synthetic image. By this way, the spectral distortion in the
original IHS method is overcome in a sense.

2.2. Evolutionary Optimization. Evolutionary algorithms are
global heuristic optimization methods which simulate the
natural evolution process [14]. The model tackled by an EA
can be generally formulated as

min 𝑓 (𝑧) ,
s.t. 𝑧 ∈ Ω, (7)

where 𝑧 is a decision variable, Ω is the search space, and𝑓(𝑧) is the objective function. A widely used EA framework
is shown as follows.

Step 1. Uniformly randomly sample a set of solutions 𝐷 ={𝑧1, . . . , 𝑧𝑛} which means population size from the search
space Ω, and calculate their objectives.

Step 2. Generate a set of offspring solutions 𝑄 = {𝑡1, . . . , 𝑡𝑛}
from 𝐷 by using genetic operators, and calculate their
objectives.

Step 3. Calculate the fitness of each solution, and select 𝑛
solutions to 𝐷 from 𝐷 ∪ 𝑄.

Step 4. If the stop condition is satisfied, return the best
solution found so far; otherwise, go to Step 2.



Mathematical Problems in Engineering 3

Start

String 
representation

Output the fusion image

Fitness evaluation

Yes

No

Reproduction
procedure

G ≥ max_gen

Figure 2: The flowchart of evolutionary algorithm.

A variety of EAs have been proposed and new ones are
still coming.These EAs differ from each other by using differ-
ent genetic operators in Step 2 and the selection operators in
Step 3. An EA usually stops when a given maximum number
of iterations are reached or the best objective value does not
change in some iterations. The algorithm flow is shown in
Figure 2.

From the above framework, we can see that EAs have
two major advantages over classical programming methods:
(1) they work on a set of solutions simultaneously; thus
they are insensible to the initial solutions and (2) they
do not need the gradient of the objective function, which
makes them suitable to nonlinear and black-box optimization
problems.

2.3. Evolutionary Pan-Sharpening Model. We aim to design a
model, which is suitable for EAs, by extending the adaptive
IHS method. Like adaptive IHS, our basic idea is to find
the optimal coefficients 𝛼 to reconstruct the synthetic image.
Instead of optimizing the 𝐺(𝛼) function to obtain 𝛼, we
consider more to design such an objective function. More
precisely, we assume that

(i) the PAN image could be approximated by a linear
combination of the optimal synthetic image; that is,

𝑃 ≈ ∑
𝑐

𝜃𝑐𝐹𝑐, (8)

where 𝜃𝑐 ≥ 0, 𝑐 = 1, 2, . . . , 𝐶, are unknown coeffi-
cients;

(ii) the upsampled MS image 𝑀 could be degraded from
the optimal synthetic image; that is,

𝑀𝑐 (𝑥, 𝑦) ≈ ∑
𝑖,𝑗

𝐾(𝑖, 𝑗) 𝐹𝑐 (𝑥 − 𝑖, 𝑦 − 𝑗) , (9)

where 𝐾 is a 3 × 3 unknown convolution template.

By considering the above two assumptions and themodel
in (7), we design the following model:

min 𝐻(𝛼, 𝜃, 𝐾) = ∑
𝑥,𝑦

{{{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃 (𝑥, 𝑦) − ∑

𝑐

𝜃𝑐𝐹𝑐 (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 + 1𝐶∑

𝑐

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑀𝑐 (𝑥, 𝑦) − ∑
𝑖,𝑗

𝐾(𝑖, 𝑗) 𝐹𝑐 (𝑥 − 𝑖, 𝑦 − 𝑗)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝}}} ,

s.t. 0 ≤ 𝛼𝑐 ≤ 1, 𝑐 = 1, 2, . . . , 𝐶,
0 ≤ 𝜃𝑐 ≤ 1, 𝑐 = 1, 2, . . . , 𝐶,
∑
𝑖,𝑗

𝐾(𝑖, 𝑗) = 1, 0 ≤ 𝐾 (𝑖, 𝑗) ≤ 1, 𝑖, 𝑗 = 1, 2, 3,
(10)

where | ⋅ |𝑝 is 𝐿𝑝 norm and 𝐹𝑐(𝑥, 𝑦) is calculated as in (5).
It is clear in (10), the first part reflects the first assumption
and the second part reflects the requirement of the second
assumption.

We would like to make the following comments on the
above model.

(i) We use 𝐿𝑝 norm in (10) to measure the difference
between between two points, but other measures
can also be applied here. The reason is that the

optimization technique we use do not consider the
form of the model.

(ii) In EA algorithm, before calculating the objective
value, 𝐾 is normalized to satisfy the equation con-
straints in (10).

2.4. Adaptive Evolutionary Clustering [15]. In this letter, we
use composite differential evolution (CoDE) as the optimizer.
It should be noted that other EAs can also be applied
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here. In evolutionary clustering, coding scheme, reproduc-
tion procedure, and fitness function are the three main
components.

(1) String Representation. In CoDE, each decision variable is a
sequence of real numbers and it falls into a feasible solution
space, and the initial population is randomly generated.

(2) Fitness Evaluation. To guarantee that the evolution has
a meaningful direction, a fitness function must be set. The
fitness function of this experiment is as above (10).

(3) Reproduction Procedure. In an EA, the roles of reproduc-
tion procedure are (1) selecting some parent solutions from
the current population and (2) generating offspring solutions
by the selected parent solutions. In other words, it is the com-
bination of crossover and mutation. The basic idea behind
the reproduction procedure is to extract information from

the current population to guide the search towards the global
optimum. In this latter, we use the reproduction operator of
CoDE to generate the new trial solutions. In CoDE, three
offspring points 𝑟1, 𝑟2, 𝑟3 are generated by applying three
reproduction operators for each point 𝑟 = (𝑟1, 𝑟2, . . . , 𝑟𝑚)𝑇
in the paternal population. The three operators generate
component one by one as follows:

rand/1/bin:

𝑟1𝑗
= {{{

𝑟𝑅1𝑗 + 𝐹 ⋅ (𝑟𝑅2𝑗 − 𝑟𝑅3𝑗 ) , if rand () < 𝐶𝑅 or 𝑗 = 𝑗𝑅,𝑦𝑗, otherwise,
(11)

rand/2/bin:

𝑟2𝑗 = {{{
𝑟𝑅1𝑗 + 𝐹 ⋅ (𝑟𝑅2𝑗 − 𝑟𝑅3𝑗 ) + 𝐹 ⋅ (𝑟𝑅4𝑗 − 𝑟𝑅5𝑗 ) , if rand () < 𝐶𝑅 or 𝑗 = 𝑗𝑅,𝑟𝑗, otherwise, (12)

current-to-rand/1:𝑟3𝑗 = 𝑟𝑗 + rand () ⋅ (𝑟𝑅1𝑗 − 𝑟𝑗) + 𝐹 ⋅ (𝑟𝑅2𝑗 − 𝑟𝑅3𝑗 ) , (13)

where 𝑗 = 1, 2, . . . , 𝑚, rand() returns a uniform random
number from [0.0, 1.0], 𝑗rand is a random integer from [1, 𝑚],
and 𝑟𝑅1–𝑟𝑅4 are randomly selected from the population and
they are different from each other and different from the
parent 𝑟. 𝐹 and 𝐶𝑅 are two algorithm parameters which are
randomly selected from the combinations of [𝐹 = 1.0, 𝐶𝑅 =0.1], [𝐹 = 1.0, 𝐶𝑅 = 0.9], and [𝐹 = 0.8, 𝐶𝑅 = 0.2].
(4) Selection Procedure. The selection procedure selects some
solutions from the current population and the newly gener-
ated offspring solutions to survive to the next generation. A
naive way is to replace the current population directly by the
offspring population. Amorewidely used strategy is to always
keep the best solution found so far.This strategy is also called
elitist selection strategy.

CoDEuses a simple elitist selection strategy by comparing
each parent with its best offspring and keeping the better one.
Let 𝑟 be the parent and 𝑟1, 𝑟2, and 𝑟3 be the three children. Let𝑟∗ = arg min

𝑧∈{𝑟1 ,𝑟2,𝑟3}
{𝑉dvi (𝑧)} , (14)

and the surviving one is

𝑟 = {{{
𝑟∗, if 𝑉dvi (𝑟∗) < 𝑉dvi (𝑟) ,𝑟, otherwise. (15)

3. Experiments

The effect evaluation of remote sensing image fusion is very
complex. Subjective assessment method has one sidedness

and is greatly influenced by the observer’s own factors.
Therefore, the subjective evaluation of images should be
carried out at the same time. Assuming that 𝑀 ∗ 𝑁 is the
size of the fused image, the objective quantitative evaluation
used in this letter is mainly as follows.

(1) CC (Correlation Coefficient). Correlation factor (CC) is
used to analyze and compare the quality of spectra and is
widely used in image quality evaluation. In this letter, the
fusion of multispectral images is compared with the original
multispectral images; its formula is

CC(𝑥𝑦)
= ∑𝑀𝑖=1 ∑𝑁𝑗=1 (𝑥𝑖𝑗 − 𝑥) (𝑦𝑖𝑗 − 𝑦)

√∑𝑀𝑖=1 ∑𝑁𝑗=1 (𝑥𝑖𝑗 − 𝑥)2∑𝑀𝑖=1 ∑𝑁𝑗=1 (𝑦𝑖𝑗 − 𝑦)2 .
(16)

Among them, 𝑥 and 𝑦 are the original multispectral
image 𝑥 and the mean value of the fused multispectral image𝑦. The correlation factor of the image is calculated by the
whole image.The value of CC is between 0 and 1; when CC is
0, there is no correlation, and when CC is 1, the correlation is
the highest.

(2) ERGAS (Relative Global Dimensional Synthesis Error).
ERGAS is mainly used to calculate spectral distortion, and
its formula is

ERGAS = 100ℎ𝑙 √ 1𝐿 𝑛∑
𝑖=1

RMSE2 (𝐵𝑖)𝑦𝑖2 , (17)
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where ℎ is the resolution of the image with high spatial
resolution, and this is the resolution of panchromatic image.𝑙 is the resolution of multispectral images with low spatial
resolution. 𝐿 is the band number of multispectral images. 𝑦𝑖
is the mean of each band after fusion of multispectral images.

(3) QAVE (A Universal Image Quality Index). QAVE treats
any distortion as a combination distortion of the three
distortion factors (loss of correlation, luminance distortion,
and contrast distortion). 𝑥 and 𝑦 represent the original
multispectral images and the fusedmultispectral images.The
formula for QAVE is

𝑄 = 4𝜎𝑥𝑦𝑥𝑦(𝜎2𝑥 + 𝜎𝑦2) (𝑥2 + 𝑦2) . (18)

(4) RASE (The Relative Average Spectral Error). RASE is used
to evaluate the average performance of image fusionmethods
for each spectral band, and the formula is as follows:

RASE = 100𝑥 √ 1𝐿 𝐿∑
𝑖=1

RMSE2 (𝐵𝑖). (19)

Among them, 𝑥 is the average radiation value of 𝐿 band(𝐵𝑖) of original multispectral image, and RMSE is minimum
square error.

(5) RMSE (The Root Mean Squared Error). The Root Mean
Squared Error (RMSE) is a common method for image
evaluation, and its formula is as follows:

RMSE = √ ∑𝑀𝑖=1∑𝑁𝑗=1 (𝑥𝑖𝑗 − 𝑦𝑖𝑗)2𝑀 × 𝑁 . (20)

Among them, 𝑥 and 𝑦 are original multispectral images
and fused multispectral images, respectively.

(6) SAM (Spectral Angle Mapper). SAM is also widely used in
multispectral image analysis to calculate the average change
of all angles in the spectral component. In order to calculate
the SAMbetween twomultispectral images, assume that each
image has 𝐿 bands, the pop vectors are V and 𝑤, and each has𝐿 components, and the formula is as follows:

SAM (V, 𝑤) = cos−1( ∑𝐿𝑖=1 V𝑖𝑤𝑖√∑𝐿𝑖=1 V2𝑖√∑𝐿𝑖=1 𝑤2𝑖 ). (21)

(7) SID (Spectral Information Divergence). SID treats the
spectral components of each pixel as random variables and
then measures the difference probabilities between these
variables; 𝑥 is a multispectral image with a probability
density 𝑃. Similarly, 𝑦 is also a multispectral image and the
probability density of 𝑄. Its formula is

SID (𝑥, 𝑦) = 𝐿∑
𝑖=1

𝑝𝑖 log(𝑝𝑖𝑞𝑖 ) + 𝐿∑
𝑖=1

𝑞𝑖 log(𝑞𝑖𝑝𝑖) . (22)

The CoDE algorithm [16], a variation of EA, is used to
tackle the proposed optimization model. The parameters of
CoDE are as follows: the size of the population is 𝑛 = 20;
the algorithm stops after 100 iterations. For simplicity, we
name the proposed evolutionary IHSmethodwith parameter𝑝 as EIHS(𝑝). Since CoDE is a heuristic method which may
get different results on different runs, the following results
are based on 50 independent runs of EIHS(𝑝). Adaptive IHS
(AIHS) [13], the stationary wavelet, and PCA based meth-
ods are compared with EIHS on two 4-band multispectral
Quickbird images with size of 256 × 256 pixels [17]. All the
algorithms are implemented in Matlab 7.11 and executed on a
server computer with two Xeon 3.2G CPUs and 96G RAM.
Seven spectral performance metrics, which are used in [13],
are applied to assess the performance of the compared meth-
ods (the details of CoDE algorithm and more experimental
results are referred to in the supplemental materials. The
source codes are available from amzhou@cs.ecnu.edu.cn).

Firstly, we compare the results visually. The MS image,
PAN image, and the fused images obtained by the algorithms
are shown in Figures 3 and 4, respectively. It is clear that AIHS
and EIHS methods obtained better spatial information than
the other algorithms.Of course, thesemethods can effectively
fuse PAN and MS images, but each fusion image is not the
same. In Figures 3 and 4, the spectral information in (e)
is poor; the spectral information is rich and the profile is
clear in (d), but the spectral resolution is low and there is
artifact; there is no obvious disadvantage, but there is no
prominent advantage in (c); in (h), spatial information and
spectral information are well preserved and visually smooth.

Secondly, we consider the performance metric values,
which are listed in Table 1. The evaluation indexes of wavelet
method are the worst, which also confirms the poor spectral
information of Figures 3(e) and 4(e). Obviously, the EIHS
algorithm is the best of all. Even the worst runs of EIHS(2.0)
perform better than AIHS, PCA, and wavelet based methods
on the metrics except SID. We can also see that EIHS(2.0)
is slightly better than EIHS(1.0) and EIHS(1.0) is slightly
better than EIHS(0.5). EIHS methods are heuristic methods
and they get different results in different runs. However,
the performance metric values show that the std. values are
relatively small, which means that they are stable for the two
problems.

4. Conclusion

In this paper, we proposed an evolutionary approach for pan-
sharpening. In the approach, a multispectral image with both
high quality of spectral and spatial information is recon-
structed from the PAN and MS images based on adaptive
IHSmethod; the optimal control parameters for image fusion
are obtained by optimizing an objective function, which
considers the relations between the fused image and the given
PAN and MS images, through an evolutionary algorithm.
The new method was compared with three state-of-the-art
pan-sharpening methods on two test images. The test results
indicated that our method performed much better than the
other methods on most of the performance metrics. The
major reason might be that (1) the assumptions and the
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Figure 3: Results on Image 1. (a) Original MS image. (b) PAN image. (c) Fused image obtained by AIHS. (d) Fused image obtained by PCA
method. (e) Fused image obtained by wavelet method. (f) Fused image obtained by EIHS(0.5). (g) Fused image obtained by EIHS(1.0). (h)
Fused image obtained by EIHS(2.0).

Table 1: Performance metric values obtained in the experiments. The mean ± std. values over 50 runs are recorded for EIHS methods.

CC ERGAS Qave RASE RMSE SAM SID
Reference values 0 0 1 0 0 0 0
Image 1

AIHS 0.0569 6.5007 0.9586 25.5809 0.1297 3.2725 0.0749
PCA 0.1627 6.7983 0.8745 26.6405 0.1351 5.5390 0.0882
Wavelet 0.2208 6.9805 0.8409 28.5473 0.1447 4.5012 0.0345

EIHS(0.5) 0.0703 5.8937 0.9611 23.0899 0.1171 3.2656 0.0667±0.0038 ±0.0676 ±0.0010 ±0.2620 ±0.0013 ±0.0599 ±0.0010
EIHS(1.0) 0.0289 5.2108 0.9711 20.4543 0.1037 2.6415 0.0538±0.0045 ±0.0810 ±0.0011 ±0.3136 ±0.0016 ±0.0690 ±0.0021
EIHS(2.0) 0.0033 4.2844 0.9808 16.8296 0.0853 2.0571 0.0364±0.0006 ±0.0573 ±0.0005 ±0.2252 ±0.0011 ±0.0332 ±0.0011

Image 2
AIHS 0.0565 6.1065 0.9663 23.4971 0.1208 2.9002 0.0706
PCA 0.1808 6.5425 0.8564 25.0917 0.1290 5.7535 0.0961
Wavelet 0.3362 6.8811 0.8070 28.8324 0.1483 4.9226 0.0328

EIHS(0.5) 0.0896 5.7235 0.9656 21.9481 0.1129 3.0889 0.0591±0.0032 ±0.0544 ±0.0007 ±0.2072 ±0.0011 ±0.0446 ±0.0009
EIHS(1.0) 0.0642 5.3055 0.9711 20.3573 0.1047 2.7474 0.0514±0.0082 ±0.1152 ±0.0015 ±0.4378 ±0.0023 ±0.0961 ±0.0024
EIHS(2.0) 0.0084 4.1622 0.9833 15.9902 0.0822 1.9671 0.0360±0.0024 ±0.0703 ±0.0006 ±0.2696 ±0.0014 ±0.0400 ±0.0017

proposed objective function are reliable for pan-sharpening
tasks and (2) the evolutionary algorithm succeeded in finding
good optimal control parameters to reconstruct the synthesis
image. It should be noted that the IHS transformation model

is not able to avoid the local dissimilarities between the
MS and PAN images [2]; thus we will consider combin-
ing other models with evolutionary optimization in the
future.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Results on Image 2. (a) Original MS image. (b) PAN image. (c) Fused image obtained by AIHS. (d) Fused image obtained by PCA
method. (e) Fused image obtained by wavelet method. (f) Fused image obtained by EIHS(0.5). (g) Fused image obtained by EIHS(1.0). (h)
Fused image obtained by EIHS(2.0).
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