81 research outputs found

    Potential therapeutic strategy for non-Hodgkin lymphoma by anti-CD20scFvFc/CD28/CD3zeta gene tranfected T cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anti-CD20 monoclonal antibody treatment has not only increased survival and cure rates in many non-Hodgkin lymphomas, but also has prompted an explosion in the development of novel antibodies and biologically active substances with specific cellular targets in the field of malignancies treatment. Since the robust immune responses are elicited by the gene-modified T cells, gene based T cell therapy may also provide a powerful tool for cancer immunotherapy.</p> <p>Methods</p> <p>In this study, we developed a vector construction encoding a chimeric T cell receptor that recognizes the CD20 antigen and delivers co-stimulatory signals to achieve T cell activation. One non-Hodgkin lymphoma cell line Raji cells co-cultured with peripheral blood-derived T cells were stably transfected with anti-CD20scFvFc/CD28/CD3zeta gene or anti-CD20scFvFc gene. T cells expressing anti-CD20scFvFc/CD28/CD3zeta or anti-CD20scFvFc gene co-cultured with CD20 positive Raji cells for different times. Cell lysis assay was carried by [<sup>3</sup>H]TdR release assay. The expressions of Fas, Bcl-2 and Caspase-3 of Raji cells were detected by flow cytometric. The secretion of IFN-gamma and IL-2 in co-culture medium was tested by ELISA assay. Activity of AP-1 was analyzed by EMSA.</p> <p>Results</p> <p>Following efficient transduction of peripheral blood-derived T cells with anti-CD20scFvFc/CD28/CD3zeta gene, an obvious cell lysis of Raji cells was observed in co-culture. T cells transduced anti-CD20scFvFc/CD28/CD3zeta gene had superior secretion of IFN-gamma and IL-2 compared to T cells transduced anti-CD20scFvFc gene. Also it led to a much stronger Fas-induced apoptosis signaling transduction in target cancer cells.</p> <p>Conclusion</p> <p>So adoptively T cells transduced anti-CD20scFvFc/CD28/CD3zeta gene mediates enhanced anti-tumor activities against CD20 positive tumor cells, suggesting a potential of gene-based immunotherapy for non-Hodgkin lymphoma.</p

    Alkane-modified short polyethyleneimine for siRNA delivery

    Get PDF
    RNA interference (RNAi) is a highly specific gene-silencing mechanism triggered by small interfering RNA (siRNA). Effective intracellular delivery requires the development of potent siRNA carriers. Here, we describe the synthesis and screening of a series of siRNA delivery materials. Short polyethyleneimine (PEI, Mw 600) was selected as a cationic backbone to which lipid tails were conjugated at various levels of saturation. In solution these polymer–lipid hybrids self-assemble to form nanoparticles capable of complexing siRNA. The complexes silence genes specifically and with low cytotoxicity. The efficiency of gene knockdown increased as the number of lipid tails conjugated to the PEI backbone increased. This is explained by reducing the binding affinity between the siRNA strands to the complex, thereby enabling siRNA release after cellular internalization. These results highlight the importance of complexation strength when designing siRNA delivery materials.Misrock FoundationAmerican Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Institutes of Health (U.S) (Grant EB000244)National Cancer Institute (U.S.) (MIT-Harvard Center of Cancer Nanotechnology Excellence. Grant CA151884)National Science Foundation (U.S.)Massachusetts Institute of Technology (Presidential Fellowships

    Remotely Activated Protein-Producing Nanoparticles

    Get PDF
    The development of responsive nanomaterials, nanoscale systems that actively respond to stimuli, is one general goal of nanotechnology. Here we develop nanoparticles that can be controllably triggered to synthesize proteins. The nanoparticles consist of lipid vesicles filled with the cellular machinery responsible for transcription and translation, including amino acids, ribosomes, and DNA caged with a photolabile protecting group. These particles served as nanofactories capable of producing proteins including green fluorescent protein (GFP) and enzymatically active luciferase. In vitro and in vivo, protein synthesis was spatially and temporally controllable, and could be initiated by irradiating micrometer-scale regions on the time scale of milliseconds. The ability to control protein synthesis inside nanomaterials may enable new strategies to facilitate the study of orthogonal proteins in a confined environment and for remotely activated drug delivery.National Cancer Institute (U.S.) (MIT-Harvard Center for Cancer Nanotechnology Excellence Grant U54 CA151884)Marie D. and Pierre Casimir-Lambert FundNational Cancer Institute (U.S.) (Cancer Center Support (Core) Grant P30-CA14051)National Institutes of Health (U.S.) (Grant EB000244

    Comparative transcriptome analysis of PBMC from HIV patients pre- and post-antiretroviral therapy

    Get PDF
    Infections of the human immunodeficiency virus (HIV) trigger host immune responses, but the virus can destroy the immune system and cause acquired immune deficiency syndrome (AIDS). Highly active antiretroviral therapy (HAART) can suppress viral replication and restore the impaired immune function. To understand HIV interactions with host immune cells during HAART, the transcriptomes of peripheral blood mononuclear cells (PBMC) from HIV patients and HIV negative volunteers before and two weeks after HAART initiation were analyzed using RNA sequencing (RNA-Seq) technology. Differentially expressed genes (DEGs) in response to HAART were firstly identified for each individual, then common features were extracted by comparing DEGs among individuals and finally HIV-related DEGs were obtained by comparing DEGs between the HIV patients and HIV negative volunteers. To demonstrate the power of this approach, minimum numbers of patients (one HIV alone; one HIV + tuberculosis, TB; one HIV + TB with immune reconstitution inflammatory syndrome during HAART) and two HIV negative volunteers were used. More than 15,000 gene transcripts were detected in each individual sample. Fourteen HAART up-regulated and eleven down-regulated DEGs were specifically identified in the HIV patients. Among them, nine up-regulated (CXCL1, S100P, AQP9, BASP1, MMP9, SOD2, LIMK2, IL1R2 and BCL2A1) and nine down-regulated DEGs (CD160, CD244, CX3CR1, IFIT1, IFI27, IFI44, IFI44L, MX1 and SIGLEC1) have already been reported as relevant to HIV infections in the literature, which demonstrates the credibility of the method. The newly identified HIV-related genes (up-regulated: ACSL1, GPR84, GPR97, ADM, LRG1; down-regulated: RASSF1, PATL2) were empirically validated using qRT-PCR. The Gene Set Enrichment Analysis (GSEA) was also used to determine pathways significantly affected by HAART. GSEA further confirmed the HAART relevance of five genes (ADM, AQP9, BASP1, IL1R2 and MMP9). The newly identified HIV-related genes, ADM (which encodes Adrenomedullin), a peptide hormone in circulation control, may contribute to HIV-associated hypertensions, providing new insights into HIV pathology and novel strategies for developing anti-HIV target. More importantly, we demonstrated that comparative transcriptome analysis is a very powerful tool to identify infection related DEGs using a very small number of samples. This approach could be easily applied to improve the understanding of pathogen-host interactions in many infections and anti-infection treatments

    Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination

    Get PDF
    Yersinia pestis is a Gram-negative bacterium that causes plague. After Y. pestis overcomes the skin barrier, it encounters antigen-presenting cells (APCs), such as Langerhans and dendritic cells. They transport the bacteria from the skin to the lymph nodes. However, the molecular mechanisms involved in bacterial transmission are unclear. Langerhans cells (LCs) express Langerin (CD207), a calcium-dependent (C-type) lectin. Furthermore, Y. pestis possesses exposed core oligosaccharides. In this study, we show that Y. pestis invades LCs and Langerin-expressing transfectants. However, when the bacterial core oligosaccharides are shielded or truncated, Y. pestis propensity to invade Langerhans and Langerin-expressing cells decreases. Moreover, the interaction of Y. pestis with Langerin-expressing transfectants is inhibited by purified Langerin, a DC-SIGN (DC-specific intercellular adhesion molecule 3 grabbing nonintegrin)-like molecule, an anti-CD207 antibody, purified core oligosaccharides and several oligosaccharides. Furthermore, covering core oligosaccharides reduces the mortality associated with murine infection by adversely affecting the transmission of Y. pestis to lymph nodes. These results demonstrate that direct interaction of core oligosaccharides with Langerin facilitates the invasion of LCs by Y. pestis. Therefore, Langerin-mediated binding of Y. pestis to APCs may promote its dissemination and infection.Peer reviewe

    Antimicrobial peptide temporin derivatives inhibit biofilm formation and virulence factor expression of Streptococcus mutans

    Get PDF
    IntroductionTemporin-GHa obtained from the frog Hylarana guentheri showed bactericidal efficacy against Streptococcus mutans. To enhance its antibacterial activity, the derived peptides GHaR and GHa11R were designed, and their antibacterial performance, antibiofilm efficacy and potential in the inhibition of dental caries were evaluated.MethodsBacterial survival assay, fluorescent staining assay and transmission electron microscopy observation were applied to explore how the peptides inhibited and killed S. mutans. The antibiofilm efficacy was assayed by examining exopolysaccharide (EPS) and lactic acid production, bacterial adhesion and cell surface hydrophobicity. The gene expression level of virulence factors of S. mutans was detected by qRT-PCR. Finally, the impact of the peptides on the caries induced ability of S. mutans was measured using a rat caries model.ResultsIt has been shown that the peptides inhibited biofilm rapid accumulation by weakening the initial adhesion of S. mutans and reducing the production of EPS. Meanwhile, they also decreased bacterial acidogenicity and aciduricity, and ultimately prevented caries development in vivo.ConclusionGHaR and GHa11R might be promising candidates for controlling S. mutans infections

    Yersinia pestis Interacts With SIGNR1 (CD209b) for Promoting Host Dissemination and Infection

    Get PDF
    Yersinia pestis, a Gram-negative bacterium and the etiologic agent of plague, has evolved from Yersinia pseudotuberculosis, a cause of a mild enteric disease. However, the molecular and biological mechanisms of how Y pseudotuberculosis evolved to such a remarkably virulent pathogen, Y pestis, are not clear. The ability to initiate a rapid bacterial dissemination is a characteristic hallmark of Y pestis infection. A distinguishing characteristic between the two Yersinia species is that Y pseudotuberculosis strains possess an O-antigen of lipopolysaccharide (LPS) while Y pestis has lost the O-antigen during evolution and therefore exposes its core LPS. In this study, we showed that Y pestis utilizes its core LPS to interact with SIGNR1 (CD209b), a C-type lectin receptor on antigen presenting cells (APCs), leading to bacterial dissemination to lymph nodes, spleen and liver, and the initiation of a systemic infection. We therefore propose that the loss of O-antigen represents a critical step in the evolution of Y pseudotuberculosis into Y pestis in terms of hijacking APCs, promoting bacterial dissemination and causing the plague.Peer reviewe
    corecore