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Abstract

Yersinia pestis, a Gram-negative bacterium, is the etiologic agenplague. A
hallmark ofY. pestis infection is the organism’s ability to rapidly deminate through an
animal host.Y. pestis expresses the outer membrane protein, Ail (Attactinmevasion
locus), which is associated with host invasion aadum resistance. However, whether
Ail plays a role in host dissemination remains eacl In this study, C57BL/6J mice were
challenged with a definel. pestis strain, KimD27, or an isogeniail-deleted mutant
derived from KimD27 via metacarpal paw pad inodalat nasal drops, orogastric
infection, or tail vein injection to mimic bubonipneumonic, oral, or septicemic plague,
respectively. Our results showed tlait-deletedY. pestis KimD27 lost the ability to
invade host cells, leading to failed host dissetionain the pneumonic and oral plague
models but not in the bubonic or septicemic plagoedels, which do not require
invasiveness. Therefore, this study demonstratetvhether Ail plays a role iM. pestis

pathogenesis depends on the infection route.

Keywords. Yersinia pestis, pneumonic plague; oral plague; Ail protein; ineas host

dissemination
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1. Introduction

Yersinia pestis is the causative agent of bubonic and pneumoragyad and is
transmitted via the bite of infected fleas or ael®sthat contain the pathogen,
respectively [1]Y. pestis belongs to the famil¥nterobacteriaceae [2] and evolved from
Yersinia pseudotuberculosis (Y. pseudotuberculosis) within the last 6,000-20,000 years
[3-7]. How an ancestor oY. pseudotuberculosis evolved to the remarkably different
pathogen, Y. pestis, remains unknown. The current hypothesis is tha.
pseudotuberculosis acquired, deleted or mutated multiple genes dutsigvolution toY.

pestis.

Because of their ability to ferment glycerol anduee nitratey. pestis strains have
been historically classified into the three bioyaaatiqua, mediaevalis, and orientalis,
which were responsible for the first, second, dnditpandemics, respectively [8]. Zhou
et al. recently proposed a new biovar, microtussedaon biochemical and genetic
analyses [9]. Yang et al. studied the genetic hystd annotatedy. pestis genomes and
revealed an evolutionary lineage that has defineth kearly ancestral and modern
pandemicY. pestis populations based on sequential single-nucleofidgymorphism
changes [5]. The. pestis strains, CO92 (biovar orientalis) and KIM (biovaediaevalis)
are modern-positioned lineages, both isolated froman plague cases [5, 18].pestis
strain 91001 (biovar microtus) was isolated fronMerotus-related plague focus in

China. Strain 91001 is avirulent to humans, onlraly causing plague in rodents and
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their associated epizootics. The genomic structdirstrain 91001 differs dramatically
from those of strains CO92 and KIM because of darangements mediated by insertion
sequence elements, which may be responsible foahwatienuation [9]. Strain KimD27,
a non-pigmented isolate of Kim10 (pCbhpgni pPst), is avirulent to mice_[1]. During
evolution, someY. pestis strains, such as C092, became the most virulesinstvhile
others, such as KimD27 that has lost figen locus, are conditionally virulent. The
virulence of microtus strain 91001 lies betweemisy CO92 and KIM. Therefore, it is
hypothesized that whether ¥ pestis strain can cause a plague depends partly on

infection routes; thus, all routes of infection slibbe systematically studied.

The pathogenitrersinia spp. share several critical virulence factors|uding the
virulence plasmid, pCD1/pYV, encoding a type llEsaion system (T3SS) [11, 12]. The
T3SS mediates cell contact-dependent injection hef Mersinia outer protein (Yop)
effectors into targeted host cells to block baetephagocytosis [13] and suppress
proinflammatory cytokine production [14-16]. Howeyéhe Yop-mediated effects may
requireYersinia to adhere to host cells [17-21]. Enteropathog¥&gisinia expresses three
dominant adhesins/invasins (YadA, invasin and &gt are required for efficient cell
attachment and invasion [22-24. pestis does not express YadA or invasin [25-27],
which were apparently lost during evolution; howevedoes express high levels of All
[19, 28]. In addition)Y. pestis acquired the plasminogen activator protease (R#)and

the pH 6 antigen [30] to enhance its associatidh twst cells.

Several experimental studies have established thies rof Ail in cell

attachment/invasion, Yop injection, and serum tasi [31-35]. The essential role of
4



87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Ail as a virulence factor of. pestis has also been established in rat models of pnelamon
and bubonic plague [34, 35] and mouse models ofipoaic, bubonic, and septicemic
plague [19, 21, 34, 35]However, no changes in virulence durilYg enterocolitica

infection were observed between wild-type straifisthis pathogen and its isogenic

ail-deleted mutant [36, 37].

In this study, we systematically investigated wkethAil-mediated Y. pestis
pathogenesis is related to the infection routerduglague, by using a definéfl pestis
strain, KimD27, and its isogen&l-deleted mutant. The results showed that Ail-mediat
host invasion was required fof. pestis infection and dissemination in pneumonic and
oral plague but not for systematic or bubonic p&guodicating that the role of. pestis

Ail in plague pathogenesis depends on the infectoite.

2. Materialsand Methods

2.1. Ethics statement

All animal experiments were carried out in striccardance with the Institutional
Animal Care and Use Committees and Institutional/i®e Board (IRB) of Tongji
Hospital, Tongji Medical College, China. The moubkandling protocol and all
experimental procedures were specifically apprdeedhis study by the Medical Ethics
Committee of Tongji Hospital and conducted in adamice with the institutional

guidelines (IRB ID: TJ-A20141220 for animal expeemnts and TJ-C20140113 for human



107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

experiments). All procedures on mice were performeder anesthesia. All volunteers

(serum donors) involved in the experiment signatseat forms.
2.2. Mice

C57BL/6 wild-type mice were purchased from Wuhanvdrsity Animal Center,
Wuhan, China. All mice were housed in pathogen-freeditions and treated in direct

accordance with guidelines drafted by the AnimaleGaommittees of Tongji Hospital.
2.3. Bacterial strains and plasmids

Y. pestis strain KimD27 is a non-pigmented isolate of Kim{@ D1 pgmi pPst)
[1]. Y. pestis strain 1418 used in this study originated from R&7 [38].Y. pestis 91001
(biovar microtus) was isolated from Microtus-related plague focus in China and is
avirulent to humans, only naturally causing plaguesmall rodents [9]. Thé&ersinia
strains were cultured on GC-based plates (Difc@ari&p MD, USA) supplemented with
1% hemoglobin (USB Co., Cleveland, OH, USA). Alasits ofYersinia spp. used in this

study were cultured at 26°C [39].

pCVvD4424il::KmGB is a suicide vector, carrying an gene-knockout sequence
with ampicillin and kanamycin resistance and stangd. coli S17-2pir [40]. pSE380Qail
iIs an expression plasmid that expresses #ile gene of Y. pestis [41]. The
pXEN-luxCDABE (pXEN-18) plasmid, a gift from Dr. Ruifu Yan®eijing Institute of
Microbiology and Epidemiology, Beijing, China, cams alux gene that can generate

luminescence iYersinia spp. [42].

2.4. Construction of ail-knockout and knockin Y. pestis strains

6



128 The suicide plasmid pCVD442-ail::KmGB was mobilizadto Y. pestis strain
129 KimD27, as previously described by Ho et al. [48]brief, the suicide vector presented
130 in E. coli S17-2pir was introduced intd. pestis KimD27 via a typical conjugation assay.
131 Kanamycin-resistant transconjugants were selecad)uheYersinia-selective agar plate
132  (BD, Franklin Lakes, NJ, USA), for counter-selentiaf donors. Selected transconjugants
133 were plated onto Luria-Bertani (LB) agar with 10#4ciose (Sigma-Aldrich, St. Louis,
134 MO, USA) and cultured at ambient temperature fdags. Correct allelic exchange in the
135 resulting SucKan colonies was confirmed using PCR with the corresiitg primers:
136 ATGGTTTTTATGAATAAGATATTACTGGTC/TTAGAACCGGTAACCCGC. The
137  plasmid pSE38@il was transformed into trel-knockout strainy. pestis KimD27 Ail(-)
138 to obtain the ail-complemented knockin strain.The virF gene (primers:
139 TCATGGCAGAAC/AGCAGTCAG/ACTCATCTTACCATTAAGAAG) on tke pYV
140 plasmid was used as a positive control [44]. Thestraction ofail-knockout and knockin

141 Y. pestis 91001 followed the same methods described above.
142  2.5. Bioluminescent Y. pestis KimD27

143 Y. pestis KimD27 andY. pestis KimD27 Ail(-) were transformed with pXEN-18 by
144  electroporationY. pestis strains with the pXEN-18 plasmid generate lumieese that
145 can be detected by the Night OWL Il LB983 imagingtem (Berthold Technologies,
146 Bad Wildbad, Germany) _[42]. The plasmid was idesdif via PCR (primers:

147 TCTCAAACAGAGGTAATGAAACG/ CATCAAAAATAGTCGTAGCAT) [42].

148  2.6. Serumt-killing assay
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Bacterial resistance to complement in fresh senam fC57BL/6J mice and human
volunteers was determined as described previo@4ly45]. Animal serum was collected
from C57BL/6 mice by heart puncture after anestheSlotted blood samples were
centrifuged at 1008g for 15 min to obtain serum. Heat-inactivated semas used as a
control after heating at 56°C for 30 min. FreshBdia were inoculated separately with
Y. pestis strains. After culturing for 18 h, the bacteriarevesuspended in sterilized
phosphate-buffered saline (PBS) to anegdf 0.2 and diluted to 1:1000 in PBS. The
diluted bacterial suspension (Bpwas added to 2Q0 of normal human serum (NHS)
and normal mouse serum. The samples were inculatdd°C in 5% C@for 60 min.
The mixtures were serially diluted 10-fold, and thable bacteria were counted via LB
agar plating. Serum resistance levels were detedniny comparing the number of
surviving bacteria (colony-forming units; CFUs)ated with fresh NHS to the number of

the surviving bacteria treated with heat-inactidatHS (defined as 100%).
2.7. Cell invasion assay

The cell invasion assay has been described prdyipi§]. Briefly, Chinese hamster
ovary (CHO) cells were cultured in RPMI-1640 medi(lafe Technology, Grand Island,
NY, USA) with 2% fetal calf serum (FCS; Sigma-Akhi St. Louis, MO, USA) at a
concentration of 1xHml in 24-well plates (BD, Franklin Lakes, NJ, USA)fter adding
1 ml of bacterial suspension without FCS at 1>ABU/ml, cells were incubated for 2.5 h
at 37°C in 5% C@ To determine the bacterial internalization, gemén (Invitrogen,
Carlsbad, CA, USA), which kills extracellular bataebut cannot penetrate host cells,

was added to each well to a final concentratiorl@® pg/ml, and the cultures were
8



171 incubated for 60 min. Cells were washed three titeesemove the antibiotic, then
172 suspended in PBS containing 0.5% saponin, dilided, plated on both the LB and

173 pestis plates. The bacterial internalization levels weetermined by counting CFUs
174 recovered from lysed cells. All experiments wergqgrened in triplicate, and the data are

175 expressed as the means * standard error of mean.
176  2.8. Animal challenge for infection and dissemination

177 To confirm whether Ail plays a role in plague vivo, mice were inoculated either
178 subcutaneously, intranasally, orogastrically oraménously via hind paw injection, nasal
179 dropping, orogastric infection via catheter, or tain injection, respectively. Three
180 separate experiments were conducted, includingemisgtion by CFU counting,
181 dissemination byn vivo imaging, and infectivity by survival rate. The sinination rate
182 was defined as the transport\ofpestis to the lymph nodes, livers, spleens and lungs.[47]
183 The infectivity was defined as the mortality afpathogen inoculation. All the mice were
184 active without adverse state performance. No mied tefore meeting the criteria for

185 euthanasia.
186 2.8.1 Dissemination

187 C57BL/6J mice were infected with. pestis KimD27 andY. pestis KimD27 Ail(-)
188 via subcutaneous injection K 10° CFUs), nasal drops (5x10CFUs), orogastric
189 infection (4x18 CFUSs) or intravenous injection (110FUs) after anesthesia (orogastric
190 infection was without anesthesia) to mimic buborpoeumonic, oral or septicemic

191 plague, respectively. We sacrificed the mice thademwent subcutaneous, intravenous
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and intranasal injections at 48 hours post-inotutatand the mice that underwent
orogastric infection at 72 hours post-inoculatiém.the indicated time points, the mice
were euthanized, and their inguinal lymph nodekeess, livers and lungs were collected
aseptically, weighed and homogenized in sterili2&5. The homogenized organs were
then treated with 1% Triton X-100 (Biosharp, ShesmzhChina) for 10 min to release the

bacteria, and serial dilutions were plated for Gfélunts.
2.8.2 Invivo imaging

C57BL/6J mice were anesthetized with 2% isoflurdae the entire one-time
imaging process in an isolation chamber using al% I8pectrum instrument (Caliper,
Shanghai, China). Mice were imaged at 0 and 48drours post-infection (48 hours for
subcutaneous, intravenous and intranasal infecii@ihours for orogastric infection).
Radiance signaling was measured in photons/sétstaradian and analyzed using Living
Image Software V.4.2 (Caliper) as described preshpy48]. To better show the
luminous signals in the infected area on the imggiystem, the chests and abdomens of

mice were surgically opened.
2.8.3 Survival analysis

The mice were inoculated with. pestis KimD27 or Y. pestis KimD27 Ail(-) in a
similar manner to that described for threvivo dissemination assay for the different
infection routes. ForY. pestis 91001 and its derivatives, mice (n=8/group) were

intravenously inoculated with 300 CFUs of 91001946001 Ail(-). The survival rates of

10
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the mice were recorded every H@urs up to 14 days post-infection. Mice were

euthanized upon reaching humane endpoints.

2.9. Satistical analysis

Statistical analyses were performed using Graptfam, version 6.0 (GraphPad,
San Diego, CA, USA). Data are presented as the malaies + standard error of mean
(SEM). The difference between two groups was detexdhusing a two-tailed Student's
t-test. The survival rates in the different infectgnoups were compared with a log-rank
test using Kaplan-Meier analysis. A probability wal of p<0.05 was considered

statistically significant.

3. Reaults

3.1. Construction of ail-knockout Y. pestis KimD27

The ail-knockout Y. pestis KimD27 was constructed using a suicide plasmid and
subsequent selection methods. BHeknockout strain and complementary knockin strain
were confirmed by PCR for detecting the viruleragphid andail gene in theY. pestis

strain KimD27 (Fig. 1A).

3.2. Knocking out ail in Y. pestis KimD27 decreased the bacterial ability to invade

epithelial cells and conferred sensitivity to being killed by human serum

11
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To confirm the functional deletion @fil, Y. pestis KimD27 andY. pestis KimD27
Ail(-) were first examined for serum sensitivityinglar to the results of previous studies
[28, 31, 32, 35], thail mutant became sensitized to normal human serummdiuto
mouse serum_[31] (Fig. 1BY). pestis KimD27 Ail(-) was also tested for its ability to
invade CHO cells. Fig. 1C shows that the abilityYofpestis KimD27 Ail(-) to invade

host cellswas significantly reduced. However, both the semagistance and invasion

ability were recovered in the complementaityknockin strain.

3.3. Y. pestis KimD27 Ail(-) lost its dissemination ability when challenged intranasally

and orogastrically

The bacterial dissemination was determined by d¢ognthe bacterial loads in
individual organs (lymph node, spleen, liver andgs; Fig. 2A) and tracing the
fluorescence intensity of the bioluminescence (FigB) with the pXEN-18
plasmid-containingY. pestis. Strain KimD27 Ail(-) showed significantly reduced
bacterial loads compared with those of the WT stigdon intranasal and orogastric
infection but not upon subcutaneous or intravenmfisction (Fig. 2A). Thein vivo
imaging results were essentially the same to tlobserved for the bacterial loads in the
organs (Fig. 2B), indicating that Ail is essenfial Y. pestis KimD27 host dissemination

in pneumonic and oral plague.

3.4.Y. pestis KimD27 Ail(-) did not cause pneumonic or oral plague

12



252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

Y. pestis KimD27 caused typical infections through all irtfea routes, although the
inoculation concentrations were much higher tharsehtypically used for fully virulent
wild-type Y. pestis (Fig. 3) [19, 47, 49]. Upon losing Ail expression,pestis KimD27
completely lost the ability to cause pneumonic arnchgastric infections at the highest
inoculation level used. Moreover, tag mutant maintained a reduced capacity to induce
bubonic and septicemic plagues. These results regdihat different infection routes can

lead to diverse infection outcomes forpestis.

3.5 Ail playsrolesin host cell invasion and human serum sensitivity in Y. pestis 91001

Using surrogate strains that are less restricterefylatory burdens imposed by the
National Select Agent Registry or equivalent rutesy add great value to a study;
however, authors of studies using such straingi¢pdarly in animal models) must justify
why the resulting data are relevant to the biolo§yhe wild-type strain. We therefore
evaluated the invasion and serum resistancey.opestis 91001 and itsail mutant
derivatives. Theail mutant became sensitized to normal human serunmdiuio mouse
serum (Fig. 4A). The invasion of 91001 Ail(-) to OHcells was significantly reduced
compared to the 91001 or 91001 Ail(-) waH complement (Fig. 4B). Moreover, mice
were inoculated though tail vein injection with 910and 91001 Ail(-), and there were no
differences in survival rate of mice infected wiltlese two strains (Fig. 4C). This result is
consistent with the observation from KimD27. Thecroius strain 91001 between

modern lineages and pseudotuberculosis is thought to be an intermediate, from which
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all modern plague strains have evolved. Thus,réssilt indicates that Ail plays roles in

invasion and serum resistance in different lineajes pestis.

4. Discussion

To cause plagué,. pestis must overcome the host’s first lines of defensehsas the
skin and mucosal surface€urrent studies suggest that the role Yofpestis Ail in
developing plague results from its ability to prdmbacterial invasion in murine hosts. In
this study, we used a single KIM strain to mimicrfglague types and systematically
investigatedyY. pestis Ail’'s role in plague pathogenesis. We demonstrdked Ail plays
an essential role in initiating host infection atidsemination during pneumonic and oral
plague, and the role of. pestis Ail in this pathogenesis is related to the infestroute.
Moreover, using twoy. pestis strains, an attenuated strain and wild-type (fullplent)
strain, we concluded that. pestis strains from different lineages might yield ditet

results.

Our results are in accordance with the conclughan Ail plays a significant role in
pneumonic and oral plague but not in bubonic otisemic plague. However, studies by
Felek et al. showed that Ail is essential for \@nde in the intravenous route in a KIM5
(pgm) strains [19], which differs from that reportedtims study (Fig. 3C and Fig. 4C). It
is unclear whether the alternative method ddrdeletion has effect on the virulence of
mutant or whether the discrepancies in our resuktsdue to different strains of mice. It

should be noted that Felek et al. also showed ahlbugh the calculated Lgp of the

14
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KIM5 Aail mutant is much higher than that of KIM5, 100 orgams can kill a few mice
in some cases, suggesting that the expressiomuwénce factors of. pestis may be very
sensitive to the environment. Additionally, Barétaal. showed that Ail is not required for
virulence in an intravenous mouse model of pladyeusing retro-orbital inoculation
with Y. pestis KIM5 [31]. In fact, the reduced role of Ail in segemic plague (maybe in
other routes) is likely due in part to the lackoafctericidal activity of mouse complement;
thus, the role of Ail in serum resistance is notiraportant in mice. Unlike with the
mechanistic entries thal. pestis uses to causéubonic and septicemic plague, we
speculate that after entering the lungs or digessiystem via aspiration or feeding,
pestis uses its Ail protein_[31] and plasminogen activgi@la) [50] in addition to other
factors to bind to and invade the mucosal layeth@abronchial and digestive tracts.
pestis may then hijack antigen-presenting cells, such asraphages or dendritic cells, to

promote host dissemination.

The results presented herein may help explain efsercies in the data presented in
previous studies. Ail plays an important role iague in rat and mouse models [19, 34,
35]. However, the virulence was unchanged betwkemild-type strain and its isogenic
ail-deleted mutant duringy. enterocolitica infection [36,_37].Y. enterocolitica and Y.
pseudotuberculosis express all three invasion-related genes (YadAasinv and Ail).
Invasin has shown to induce the strongest bactemhsion into epithelial cells,
especially when bacteria are grown at 26°C [51likénis et al. demonstrated that the All
protein inY. pseudotuberculosis YPIII had significantly decreased adhesive and siva

abilities compared with those of pestis. We therefore speculate that unlike Ail Yo
15
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pestis, Ail may not be essential for. enterocolitica or Y. pseudotuberculosis to invade

hosts.

Y. pestis strain CO92 and KIM are modern-positioned lineaigairss both isolated
from human plague cases. Using a fully virulent @Q&rain and its derivatives,
Kolodziejek and colleagues demonstrated ¥hauestis Ail contributes to the virulence of
pneumonic plague_[35] and protects against compiemediated lysis in bubonic
plague pathogenesis in mice and rats [34]. Howeler.D;, of certainY. pestis strains,
such as CO92, has been reported to be as low a€kldein a murine model [52, 53].
Notably, the KIM strains are naturally attenuategk do the loss of the pgm locus, and
studies with such strains may represent anothempbeaof Ail’'s role in theY. pestis
pathogenesisWe therefore believe that the attenuated straip n@ae some advantages
over the fully virulent strains for studying hositpogen interactions. Our recent work
demonstrated that. pestis interacts with SIGNR1 (CD209b), a C-type lectinaptor on
antigen-presenting cells, leading to bacterial adiiéen and dissemination [39] using
pestis strain 1418. This strain originated from KimD27¢ g 104-kb pigmentation locus
has been deleted [38], and it is therefore class$ifis an avirulent and a nonselect agent
strain. To further address Ail' role i pestis, we examined serum sensitivity as well as
invasion ofY. pestis 91001 and it\ail derivatives, the result indicates Ail plays roies

in different lineages oY. pestis.

In a reported fatal laboratory-acquired infecti@se, a 60-year-old researcher at the
University of Chicago died of infection from theeatuatedy. pestis strain, KimD27 [54].

Because this strain was excluded from the Nati@®éct Agent Registry and was not
16
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known to have caused laboratory-acquired infectmmBuman fatalities, this researcher
became infected with the strain in a biosafety lldvsetting. Postmortem examination
revealed that the researcher had hereditary hemmetosis, which is an iron-overload
disease, with increased iron absorption and starageultiple organs [54, 55). pestis
infection needs iron_[56-58], and the infection adsed here likely occurred because
hemochromatosis-induced iron overload enabled/tipestis strain KimD27, which lacks
the pgm locus that includes a high-affinity iroartsport system, to infect this researcher.
The conclusion from this incident was that the igbibf the attenuated. pestis strain
KimD27 to cause plague depends on the specificuistances. In our study, we
investigated four routes by which pestis KimD27 can cause infection and found that
the Ail-mediated pathogenesis ofpestis KimD27 depended on the infection route. This
finding has been previously unreported; therefare believe that this is a novelty of our

study.

Different laboratories have used various strainedtablish the pathogenic roles of
Ail as an essential virulence factor 6f pestis in rat models of pneumonic and bubonic
plague [34, 35] and in mouse models of pneumonibphic, and septicemic plague [19,
21, 34, 35]. Because of restrictions imposed bgllaad federal regulations for using this
“select agent”, we obtaineih vivo imaging data that would have been impossible to
produce if a fully virulent strain had been useldug, our results show that the Aiotein
of Y. pestis plays a role in initiating host infection and @issnation during pneumonic

and oral plague, and the role of Ail ¥ pestis pathogenesis depends on the infection

route.
17
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Figurelegends

Fig. 1. Y. pestis KimD27 Ail(-) could not invade epithelial cellsor confer resistance to
bacterial killing via serum in humans. Deletion ofail was confirmed via PCR, serum
resistance testing and cell invasion assays.Y{(Aestis KimD27 Ail(-) yielded a PCR
product of a virulent plasmid pYV, but no produétad. (B) Y. pestis KimD27 Ail(-) lost

its resistance to being killed by normal human sehut not mouse serum. (@) pestis
KimD27 Ail(-) showed a decreased ability to invaagsthelial cells. The results presented
here were obtained from three independent expetsramd analyzed by Student$est

as the mean £ SEM (**p<0.01, ***p<0.001).

Fig. 2. Y. pestisKimD27 Ail(-) exhibited attenuated ability to be disseminated in mice.

(A) Bacterial loads in organs of infected mice (fgrBup). Mice inoculated intravenously,
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subcutaneously and intranasally were euthanizedhgr?; mice inoculated orogastrically
were euthanized on day 3. The spleens, livers angsl were removed, weighed,
homogenized and spread onto LB plates. The diss¢imm rate was determined by
counting the CFUs recovered from the whole lymplkle® spleens, livers and lungs.
Colonization results were statistically analyzethgs two-tailed, two-sample Wilcoxon
rank-sum (Mann-Whitney) test (*p<0.05). (B) Biolumscent imaging of lymph nodes,
spleens, livers and lungs of the mice infected witlpestis KimD27 pXEN-18 andY.
pestis KimD27 Ail(-) pXEN-18 (n=3/group). The bioluminesiet scale ranges from most
intense (red) to least intense (violet). To bedtesw the infected areas of the lung, spleen
and liver on the imaging system, the organs wermowed from the intravenously
infected mice. For the subcutaneously, intranasaily orogastrically infected mice, the

chests and abdomens were opened.

Fig. 3. Y. pestis KimD27 Ail(-) did not cause pneumonic or oral plague but induced
bubonic and septicemic plague at reduced levels in mice. Mice were infected withy.
pestis KimD27 andY. pestis KimD27 Ail(-) by (A) metacarpal paw pad injectio(B)
nasal drops, (C) tail vein injection or (D) orogastinfection to mimic bubonic,
pneumonic, septicemic, or oral plague, respectiveihe data presented were pooled from
three independent experiments. The survival rat® wompared via log-rank test using

Kaplan-Meier analysis (*p<0.05, **<0.01).

Fig. 4. Ail confers resistance to bacterial killing by human serum and promotes
invasion in Y. pestis 91001. (A) Serum sensitivity and (B) invasion ¥f pestis 91001

and itsAail derivatives were tested as described in Methodose The data presented
27



576 were pooled from three independent experimentsamatlyzed by Studentistest as the
577 mean = SEM (**p<0.001). (C) Mice were intravenoyshoculated with strain 91001
578 and 91001 Ail(-), and survival rates were comparedog-rank test using Kaplan-Meier

579 analysis.
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Yersinia pestisAil protein promotes host dissemination in pneumonic and oral plague.
Therole of Yersinia pestisAil protein in pathogenesis depends on infection routes.

Ail playsrolesin invasion and serum resistance in different lineages of . pestis



