49 research outputs found

    The risk factors of type 2 diabetes in hypertensive subjects

    Get PDF
    ObjectiveHypertension (HTN) and type 2 diabetes (T2DM) share common risk factors and usually co-occur. This study examined the relationship between HTN history and T2DM incidence in a cohort of Chinese hypertensive subjects.MethodsWe recruited 443 cases (T2DM and HTN) and 443 sex- and age-matched controls (HTN). The history of peak systolic blood pressure (SBP) was divided into 140-159, 160-179, and ≥ 180 mmHg, and that of peak diastolic blood pressure (DBP) was divided into 90-99, 100-109, and ≥ 110 mmHg. Multiple binary logistic regression models were used to explore the association between controlled HTN status and T2DM.ResultsCreatinine concentrations were higher in the cases than in the controls (P < 0.05). The HTN duration was longer in the cases than in the controls (14.7 years vs. 13.2 years; P < 0.05). Significant differences were also found in the history of peak SBP and DBP between the cases and controls (both P < 0.05). Creatinine, HTN duration, and family history of T2DM were risk factors for T2DM in hypertensive subjects, with odds ratios (95% confidence intervals) of 1.013 (1.004-1.022), 1.025 (1.003-1.047), and 5.119 (3.266-8.026), respectively. Compared with the lowest level of peak DBP, the odds ratio for T2DM at the highest level of peak DBP was 1.757 (1.074-2.969). Subgroups analyses showed that the effect of the history of peak DBP on T2DM was significantly modified by sex (P-interaction = 0.037).ConclusionThe highest DBP and the longest HTN duration were both independently associated with T2DM in hypertensive subjects

    4-Chlorophenol Oxidation Depends on the Activation of an AraC-Type Transcriptional Regulator, CphR, in Rhodococcus sp. Strain YH-5B

    Get PDF
    4-Chlorophenol (4-CP) oxidation plays an essential role in the detoxification of 4-CP. However, oxidative regulation of 4-CP at the genetic and biochemical levels has not yet been studied. To explore the regulation mechanism of 4-CP oxidation, a novel gene cluster, cphRA2A1, involved in biodegradation of 4-CP was identified and cloned from Rhodococcus sp. strain YH-5B by genome walking. The sequence analysis showed that the cphRA2A1 gene cluster encoded an AraC-type transcriptional regulator and a two-component monooxygenase enzyme, while quantitative real-time PCR analysis further revealed that cphR was constitutively expressed and positively regulated the transcription of cphA2A1 genes in response to 4-CP or phenol, as evidenced by gene knockout and complementation experiments. Through the transcriptional fusion of the mutated cphA2A1 promoter with the lacZ gene, it was found that the CphR regulator binding sites had two 15-bp imperfect direct repeats (TGCA-N6-GGNTA) at −35 to −69 upstream of the cphA2A1 transcriptional start site. Notably, the sub-motifs at the −46 to −49 positions played a critical role in the appropriate interaction with the CphR dimer. In addition, it was confirmed that the monooxygenase subunits CphA1 and CphA2, which were purified by His-tag affinity chromatography, were able to catalyze the conversion of 4-CP to 4-chlorocatechol, suggesting that strain YH-5B could degrade 4-CP via the 4-chlorocatechol pathway. This study enhances our understanding of the genetic and biochemical diversity in the transcriptional regulation of 4-CP oxidation in Gram-positive bacteria

    Determinants of mRNA recognition and translation regulation by Lin28

    Get PDF
    Lin28 is critical for stem cell maintenance and is also associated with advanced human malignancies. Our recent genome-wide studies mark Lin28 as a master post-transcriptional regulator of a subset of messenger RNAs important for cell growth and metabolism. However, the molecular basis underpinning the selective mRNA target regulation is unclear. Here, we provide evidence that Lin28 recognizes a unique motif in multiple target mRNAs, characterized by a small but critical ‘A’ bulge flanked by two G:C base pairs embedded in a complex secondary structure. This motif mediates Lin28-dependent stimulation of translation. As Lin28 is also known to inhibit the biogenesis of a cohort of miRNAs including let-7, we propose that Lin28 binding to different RNA types (precursor miRNAs versus mRNAs) may facilitate recruitment of different co-factors, leading to distinct regulatory outcomes. Our findings uncover a putative yet unexpected motif that may constitute a mechanistic base for the multitude of functions regulated by Lin28 in both stem cells and cancer cells

    Comparison of copper scavenging capacity between two different red mud types

    Get PDF
    A batch experiment was conducted to compare the Cu scavenging capacity between two different red mud types: the first one was a highly basic red mud derived from a combined sintering and Bayer process, and the second one was a seawater-neutralized red mud derived from the Bayer process. The first red mud contained substantial amounts of CaCO3, which, in combination with the high OH− activity, favored the immobilization of water-borne Cu through massive formation of atacamite. In comparison, the seawater-neutralized red mud had a lower pH and was dominated by boehmite, which was likely to play a significant role in Cu adsorption. Overall, it appears that Cu was more tightly retained by the CaCO3-dominated red mud than the boehmite-dominated red mud. It is concluded that the heterogeneity of red mud has marked influences on its capacity to immobilize water-borne Cu and maintain the long-term stability of the immobilized Cu species. The research findings obtained from this study have implications for the development of Cu immobilization technology by using appropriate waste materials generated from the aluminium industry

    Arsenate immobilization associated with microbial oxidation of ferrous ion in complex acid sulfate water

    No full text
    Chemical, XRD, SEM, RS, FTIR and XPS techniques were used to investigate arsenate immobilization associated with microbial Fe2+ oxidation in a complex acid sulfate water system consisting of a modified 9 K solution (pH 2.0) plus As, Cu, Cd, Pb, Zn and Mn. At a 1:12.5:70 molar ratio of As:Fe:S, schweretmannite formation was impeded. This was in contrast with the predominant presence of schwertmannite when the heavy metals were absent, suggesting that a schwertmannite binding model is not valid for explaining arsenate immobilization in the complex system. In this study, arsenate was initially immobilized through co-precipitation with non-Fe metals and phosphate. Subsequently when sufficient Fe3+ was produced from Fe2+ oxidation, formation of a mixed iron, arsenate and phosphate phase predominated. The last stage involved surface complexation of arsenate species. Pb appeared to play an insignificant role in arsenate immobilization due to its strong affinity for sulfate to form anglesite. Phosphate strongly competed with arsenate for the available binding sites. However, As exhibited an increased capacity to compete with P and S for available binding sites from the co-precipitation to surface complexation stage. Adsorbed As tended to be in HAsO4 2− form. The scavenged arsenate species was relatively stable after 2464-h aging

    Downstream patterns of bed sediment-borne metals, minerals and organic matter in a stream system receiving acidic mine effluent: a preliminary study

    No full text
    Different downstream variation patterns were observed for a range of bed sediment-borne metals (aqua regia-extractable fraction) in a subtropical stream system receiving acid mine drainage. Mine-originated Fe tended to be deposited in the acidic (mean pH b4.9) upstream reach in forms of goethite and/or hematite. In contrast, other metals tended to be transported farther downstream and settled in a low-gradient reach with high pH (mean pH N5.6). The peak of sediment-borne Al, Be, Ca, Cd, Co, Cu, La, Mn, Ni and Zn corresponded very well with the peak of the sediment-borne organic matter, suggesting a close association between the water-borne organic colloids and the inorganic metal oxides/hydroxides during their transport. The marked increase in the sediment-borne Al and Pb started more upstream than the other metals, suggesting that the water-borne Al and Pb were more susceptible to pH rise-induced precipitation, as compared to the other metals. It appeared that the organic colloids played no important role in Pb transport and settlement. The iron precipitates had a limited role to play in affecting the transport and fates of other metals since they were predominantly formed and deposited in the acidic reach, which made them incapable of scavenging cationic metals by co-precipitation or adsorption

    A holistic approach for food waste management towards zero-solid disposal and energy/resource recovery

    No full text
    This study developed a holistic approach which was based on the ultra-fast hydrolysis of food waste with the fungal mash rich in various hydrolytic enzymes produced in situ from food waste as well. After the 8-h hydrolytic treatment, the solid residue and liquor were separated. It was found that the produced solid residue can meet all the requirements for biofertilizer in terms of NPK and heavy metal contents, while the separated liquor with high soluble organics concentration was further subject to anaerobic digestion for enhanced biomethane production. The results showed that 0.41 kg of biofertilizer with a moisture content of 76.9% and 54.4 L of biomethane could be produced from 1 kg of food waste. As such, it is expected that this study may lead to the paradigm shift in food waste management with the ultimate target of zero-solid discharge.Accepted versio

    Status of aluminium in environmental compartments contaminated by acidic mine water

    No full text
    Investigations were conducted to characterize aluminium in the affected stream and soils downstream of a mine site discharging acidic mine water. The water-borne Al exhibited a highly non-conservative behaviour at water pH below 3.8 in the 0–3.9km reach and a much more conservative behaviour in the reaches with higher water pHs downstream of the 3.9km station. The concentration of water-borne Al was higher at the medium flow event than at the flood event in the 0–9km reach while the opposite was observed for the 16–56km reach. Transport of Al associated with suspended materials was only observed during the flood event. The amount of Al carried by per unit weight of suspended particles was smaller in the 0–16km reach than in the 25–56km reach. The sediment-borne Al increased downstream with maximum Al accumulation occurred in the 25–29km reach. The residual Al dominated Al fractions in the streambed sediments. The NH4Cl-extractable Al in the affected soils decreased with increasing distance from the acidic irrigation water source. In contrast, both the water-extractable and total Al in the soils showed no clear distribution pattern. The NH4Cl-extractable Al was closely correlated with soil acidity while neither total Al nor water-extractable Al was correlated with soil acidity. The vertical distribution of NH4Cl-extractable Al was regulated by pH with certain influence from soil clay abundance
    corecore