1,331 research outputs found
A New Solution of the Yang-Baxter Equation Related to the Adjoint Representation of
A new solution of the Yang-Baxter equation, that is related to the adjoint
representation of the quantum enveloping algebra , is obtained by
fusion formulas from a non-standard solution.Comment: 16 pages (Latex), Preprint BIHEP-TH-93-3
Recommended from our members
Nitrogen Addition Increases the Sensitivity of Photosynthesis to Drought and Re-watering Differentially in C3 Versus C4 Grass Species
Global change factors, such as variation in precipitation regimes and nitrogen (N) deposition, are likely to occur simultaneously and may have profound impacts on the relative abundance of grasses differing in functional traits, such as C3 and C4 species. We conducted an extreme drought and re-watering experiment to understand differences in the resistance and recovery abilities of C3 and C4 grasses under different N deposition scenarios. A C3 perennial grass (Leymus chinensis) and two C4 grasses (annual species Chloris virgata and perennial species Hemarthria altissima) that co-occur in Northeast China were selected as experimental plants. For both C3 and C4 grasses, N addition caused a strong increase in biomass and resulted in more severe drought stress, leading to a change in the dominant photosynthetic limitation during the drought periods. Although N addition increased antioxidant enzyme activities and protective solute concentrations, the carbon fixing capacity did not fully recover to pre-drought levels by the end of the re-watering period. N addition resulted in lower resilience under the drought conditions and lower resistance at the end of the re-watering. However, N addition led to faster recovery of photosynthesis, especially in the C3 grass, which indicate that the effect of N addition on photosynthesis during drought was asymmetric, especially in the plants with different photosynthetic nitrogen use efficiency (PNUE). These findings demonstrated that nitrogen deposition may significant alter the susceptibility of C3 and C4 grass species to drought stress and re-watering, highlighting the asymmetry between resistance and resilience and to improve our understanding about plant responses to climate change
Radiative transitions in charmonium from twisted mass lattice QCD
We present a study for charmonium radiative transitions:
, and
using twisted mass lattice QCD gauge
configurations. The single-quark vector form factors for and
are also determined. The simulation is performed at a lattice
spacing of fm and the lattice size is . After
extrapolation of lattice data at nonzero to 0, we compare our results
with previous quenched lattice results and the available experimental values.Comment: typeset with revtex, 15 pages, 11 figures, 4 table
Assessment of mitochondrial dysfunction and implications in cardiovascular disorders
Mitochondria play a pivotal role in cellular function, not only acting as the powerhouse of the cell, but also regulating ATP synthesis, reactive oxygen species (ROS) production, intracellular Ca2+ cycling, and apoptosis. During the past decade, extensive progress has been made in the technology to assess mitochondrial functions and accumulating evidences have shown that mitochondrial dysfunction is a key pathophysiological mechanism for many diseases including cardiovascular disorders, such as ischemic heart disease, cardiomyopathy, hypertension, atherosclerosis, and hemorrhagic shock. The advances in methodology have been accelerating our understanding of mitochondrial molecular structure and function, biogenesis and ROS and energy production, which facilitates new drug target identification and therapeutic strategy development for mitochondrial dysfunction-related disorders. This review will focus on the assessment of methodologies currently used for mitochondrial research and discuss their advantages, limitations and the implications of mitochondrial dysfunction in cardiovascular disorders
Spontaneous weaving: 3D porous PtCu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction
The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.apcatb.2018.04.035 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/We report a simple and efficient surfactant-free method to prepare 3D porous PtCu networks with ultrathin jagged nanowires and controllable composition. The morphological evolution and the influential effects of the important experimental parameters on the PtCu networks have been systematically studied. Relative to commercial Pt/C and Pt black catalysts, these porous PtCu networks exhibit much better activity and remarkably improved durability towards the oxygen reduction reaction (ORR). The excellent ORR performance could be attributed to their structural features, including the core-shell nanostructures with a Pt-skin, the 3D porous networks with high surface area, and the ultrathin (3.6 nm) jagged nanowires with plentiful edge/corner atoms. Notably, this method can be facilely extended to obtain PtCuAu trimetallic nanowire networks with high porosity, which exhibits its robustness for preparing novel 3D porous nanostructures with great potential in various catalytic applications.Natural Sciences and Engineering Research Council of Canada (NSERC)
University of Waterloo, and the Waterloo Institute for Nanotechnology.
NSERC, Catalysis Research for Polymer Electrolyte Fuel Cells (CaRPE FC) Network administered from Simon Fraser || Grant No. APCPJ 417858-1
Spectrum-effect relationships between high performance liquid chromatography fingerprint and analgesic property of Anisodus tanguticus (Maxim) Pascher (Solanaceae) roots
Purpose: To investigate the spectrum-effect relationships between high performance liquid chromatography with photodiode array detection (HPLC-DAD) fingerprint and analgesic activity of Anisodus tanguticus (Maxim.) Pascher (Solanaceae) (AT) roots.Methods: Analgesic activity of AT roots was evaluated by acetic acid-induced writhing test in mice. Fingerprint of AT roots was established by HPLC-DAD. After oral administration of AT roots extract, intra-gastric contents of caffeoylputrescine, anisodine, fabiatrin, scopolin, scopolamine, anisodamine and atropine in mice were determined by HPLC-DAD. Spectrum-effect relationships between HPLCDAD fingerprint and analgesic activity were investigated using bivariate correlation analysis.Results: Following treatment with different batches of AT roots extract, acetic acid-induced writhing responses in mice were inhibited significantly (p < 0.05 or 0.01), with inhibitions of 26.62 - 55.13 %, relative to the control group. Sixteen common peaks were obtained by fingerprint analysis. Peaks 1, 2, 6, 7, 8, 9 and 12 were identified as caffeoylputrescine, anisodine, fabiatrin, scopolin, scopolamine, anisodamine and atropine, respectively. Bivariate correlation analysis between analgesic activity of AT roots and 16 common peaks areas indicated the contributions of 16 common peaks to analgesic activity of AT roots. Surprisingly, bivariate correlation analysis between analgesic activity of AT roots and intragastric contents of above-named 7 constituents revealed that the contributions of the 7 constituents to analgesic activity of AT roots were different from those based on their peak areas.Conclusion: This study provides scientific justification for the investigation of the active constituents of AT root with a view to its standardization.Keywords: Anisodus tanguticus root, Analgesic activity, HPLC-DAD fingerprint, Bivariate correlation analysi
- …