1,710 research outputs found

    Modeling Paying Behavior in Game Social Networks

    Get PDF
    Online gaming is one of the largest industries on the Internet, generating tens of billions of dollars in revenues annually. One core problem in online game is to find and convert free users into paying customers, which is of great importance for the sustainable development of almost all online games. Although much research has been conducted, there are still several challenges that remain largely unsolved: What are the fundamental factors that trigger the users to pay? How does users? paying behavior influence each other in the game social network? How to design a prediction model to recognize those potential users who are likely to pay? In this paper, employing two large online games as the basis, we study how a user becomes a new paying user in the games. In particular, we examine how users' paying behavior influences each other in the game social network. We study this problem from various sociological perspectives including strong/weak ties, social structural diversity and social influence. Based on the discovered patterns, we propose a learning framework to predict potential new payers. The framework can learn a model using features associated with users and then use the social relationships between users to refine the learned model. We test the proposed framework using nearly 50 billion user activities from two real games. Our experiments show that the proposed framework significantly improves the prediction accuracy by up to 3-11% compared to several alternative methods. The study also unveils several intriguing social phenomena from the data. For example, influence indeed exists among users for the paying behavior. The likelihood of a user becoming a new paying user is 5 times higher than chance when he has 5 paying neighbors of strong tie. We have deployed the proposed algorithm into the game, and the Lift_Ratio has been improved up to 196% compared to the prior strategy

    Semaphorin 4D Promotes Skeletal Metastasis in Breast Cancer.

    Get PDF
    Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects

    Electromagnetic Scattering Laws in Weyl Systems

    Full text link
    Wavelength determines the length scale of the cross section when electromagnetic waves are scattered by an electrically small object. The cross section diverges for resonant scattering, and diminishes for non-resonant scattering, when wavelength approaches infinity. This scattering law explains the color of the sky as well as the strength of a mobile phone signal. We show that such wavelength scaling comes from free space's conical dispersion at zero frequency. Emerging Weyl systems, offering similar dispersion at non-zero frequencies, lead to new laws of electromagnetic scattering that allow cross sections to be decoupled from the wavelength limit. Diverging and diminishing cross sections can be realized at any target wavelength in a Weyl system, providing unprecedented ability to tailor the strength of wave-matter interactions for radio-frequency and optical applications

    Ray tracing of multiple transmitted/reflected/converted waves in 2-D/3-D layered anisotropic TTI media and application to crosswell traveltime tomography

    Get PDF
    To overcome the deficiency of some current grid-/cell-based ray tracing algorithms, which are only able to handle first arrivals or primary reflections (or conversions) in anisotropic media, we have extended the functionality of the multistage irregular shortest-path method to 2-D/3-D tilted transversely isotropic (TTI) media. The new approach is able to track multiple transmitted/reflected/converted arrivals composed of any kind of combinations of transmissions, reflections and mode conversions. The basic principle is that the seven parameters (five elastic parameters plus two polar angles defining the tilt of the symmetry axis) of the TTI media are sampled at primary nodes, and the group velocity values at secondary nodes are obtained by tri-linear interpolation of the primary nodes across each cell, from which the group velocities of the three wave modes (qP, qSV and qSH) are calculated. Finally, we conduct grid-/cell-based wave front expansion to trace multiple transmitted/reflected/converted arrivals from one region to the next. The results of calculations in uniform anisotropic media indicate that the numerical results agree with the analytical solutions except in directions of SV-wave triplications, at which only the lowest velocity value is selected at the singularity points by the multistage irregular shortest-path anisotropic ray tracing method. This verifies the accuracy of the methodology. Several simulation results show that the new method is able to efficiently and accurately approximate situations involving continuous velocity variations and undulating discontinuities, and that it is suitable for any combination of multiple transmitted/reflected/converted arrival tracking in TTI media of arbitrary strength and tilt. Crosshole synthetic traveltime tomographic tests have been performed, which highlight the importance of using such code when the medium is distinctly anisotropi

    Selection of Reference Genes for qRT-PCR Analysis in Medicinal Plant \u3cem\u3eGlycyrrhiza\u3c/em\u3e under Abiotic Stresses and Hormonal Treatments

    Get PDF
    Best known as licorice, Glycyrrhiza Linn., a genus of herbaceous perennial legume, has been used as a traditional herbal medicine in Asia and a flavoring agent for tobacco and food industry in Europe and America. Abiotic stresses and hormonal treatments can significantly impact the development and metabolism of secondary metabolites in Glycyrrhiza. To better understand the biosynthesis of the trace-amount bioactive compounds, we first screened for the suitable reference genes for quantitative real-time reverse transcription PCR (qRT-PCR) analysis in Glycyrrhiza. The expression profiles of 14 candidate reference genes, including Actin1 (ACT), Clathrin complex AP1 (CAC), Cyclophilin (CYP), Heat-shock protein 40 (DNAJ), Dehydration responsive element binding gene (DREB), Translation elongation factor1 (EF1), Ras related protein (RAN), Translation initiation factor (TIF1), β-Tubulin (TUB), Ubiquitin-conjugating enzyme E2 (UBC2), ATP binding-box transpoter 2 (ABCC2), COP9 signal compex subunit 3 (COPS3), Citrate synthase (CS), and R3H domain protein 2 (R3HDM2) from two congeneric species, Glycyrrhiza uralensis F. and Glycyrrhiza inflata B., were examined under abiotic stresses (osmotic and salinity) and hormonal treatments (Abscisic acid (ABA) and methyl jasmonic acid (MeJA)) using a panel of software, including geNorm, NormFinder, BestKeeper, and Delta CT. The overall stability, however, was provided by RefFinder, a comprehensive ranking system integrating inputs from all four algorithms. In G. uralensis, the most stable reference genes under osmotic stress, salt stress, ABA treatment, and MeJA treatment were TIF1, DNAJ, CS, and ABCC2 for leaves and DNAJ, DREB, CAC, and CAC for roots, respectively. In comparison, the top ranked genes were TUB, CAC, UBC2, and RAN for leaves and TIF1, ABCC2, CAC, and UBC2 for roots, respectively, under stress and hormonal treatments in G. inflata. ACT and TIF1, on the other hand, were the least stable genes under the most experimental conditions in the two congeneric species. Finally, our survey of the reference genes in legume shows that EF, ACT, UBC2, and TUB were the top choices for the abiotic stresses while EF, UBC2, CAC, and ABCC2 were recommended for the hormonal treatments in Leguminosae. Our combined results provide reliable normalizers for accurate gene quantifications in Glycyrrhiza species, which will allow us to exploit its medicinal potential in general and antiviral activities in particular

    Effect of Lactobacillus plantarum ZFM4 in Helicobacter pylori-infected C57BL/6 mice: prevention is better than cure

    Get PDF
    ObjectivesThis study was performed to explore the preventive and therapeutic effects of Lactobacillus plantarum ZFM4 on H. pylori infections of the stomach tissue in C57BL/6 mice.MethodsIn this study, 40 specific-pathogen-free female C57BL/6 mice were randomly divided into five groups, namely, the control, ZFM4 pretreatment) ZFM4 pretreatment before H. pylori infected), model (H. pylori infected), triple therapy (H. pylori infected and treated with triple therapy), and ZFM4 treatment groups (H. pylori infected and treated with ZFM4). The preventive and therapeutic effects of Lactobacillus plantarum ZFM4 were evaluated in H. pylori-infected C57BL/6 mice by assessing gastric tissue morphology, inflammatory cytokine levels, microbial composition, and microbial diversity.ResultsLactobacillus plantarum ZFM4 was able to survive in low gastric pH and play a role in preventing H. pylori infection. This was evident from a reduction in both, the gastric inflammatory response and expression of inflammatory factors caused by H. pylori infection. Lactobacillus plantarum ZFM4 could also inhibit the growth of H. pylori via its beneficial impact on the gastric microbiota.ConclusionOur findings suggest that Lactobacillus plantarum ZFM4 offers superior preventive effects against H. pylori infections when used alone. However, the therapeutic effect on established infections is weaker. Further clinical trials are needed to confirm the specific dosage, duration, and other aspects of administration

    N′-Ferrocenyl-2-hydroxy­benzohydrazide

    Get PDF
    The title complex, [Fe(C5H5)(C13H11N2O3)], was prepared via self-assembly using ferrocenyl hydrazide and ethyl salicylate. The compound is potentially a tridentate ferrocene-based ligand. The conformation of the mol­ecule allows the formation of an intra­molecular N—H⋯O hydrogen bond involving the hydroxyl group. The CONHNHCO unit and the rings bonded to it are nearly coplanar. The crystal structure is stabilized by inter­molecular O—H⋯O(carbon­yl) and N—H⋯O(carbon­yl) hydrogen bonds
    • …
    corecore