16,367 research outputs found

    Absolute continuity of symmetric Markov processes

    Full text link
    We study Girsanov's theorem in the context of symmetric Markov processes, extending earlier work of Fukushima-Takeda and Fitzsimmons on Girsanov transformations of ``gradient type.'' We investigate the most general Girsanov transformation leading to another symmetric Markov process. This investigation requires an extension of the forward-backward martingale method of Lyons-Zheng, to cover the case of processes with jumps.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Probability (http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/00911790400000043

    Quantum phase diagram of an exactly solved mixed spin ladder

    Full text link
    We investigate the quantum phase diagram of the exactly solved mixed spin-(1/2,1) ladder via the thermodynamic Bethe ansatz (TBA). In the absence of a magnetic field the model exhibits three quantum phases associated with su(2), su(4) and su(6) symmetries. In the presence of a strong magnetic field, there is a third and full saturation magnetization plateaux within the strong antiferromagnetic rung coupling regime. Gapless and gapped phases appear in turn as the magnetic field increases. For weak rung coupling, the fractional magnetization plateau vanishs and exhibits new quantum phase transitions. However, in the ferromagnetic coupling regime, the system does not have a third saturation magnetization plat eau. The critical behaviour in the vicinity of the critical points is also derived systematically using the TBA.Comment: 20 pages, 2 figure

    Equilibrium Shape and Size of Supported Heteroepitaxial Nanoislands

    Full text link
    We study the equilibrium shape, shape transitions and optimal size of strained heteroepitaxial nanoislands with a two-dimensional atomistic model using simply adjustable interatomic pair potentials. We map out the global phase diagram as a function of substrate-adsorbate misfit and interaction. This phase diagram reveals all the phases corresponding to different well-known growth modes. In particular, for large enough misfits and attractive substrate there is a Stranski-Krastanow regime, where nano-sized islands grow on top of wetting films. We analyze the various terms contributing to the total island energy in detail, and show how the competition between them leads to the optimal shape and size of the islands. Finally, we also develop an analytic interpolation formula for the various contributions to the total energy of strained nanoislands.Comment: 9 pages, 7 figure

    Theory of non-Fermi liquid near a diagonal electronic nematic state on a square lattice

    Full text link
    We study effects of Fermi surface fluctuations on a single-particle life time near the diagonal electronic nematic phase on a two-dimensional square lattice. It has been shown that there exists a quantum critical point (QCP) between the diagonal nematic and isotropic phases. We study the longitudinal fluctuations of the order parameter near the critical point, where the singular forward scattering leads to a non-Fermi liquid behavior over the whole Fermi surface except along the k_x- and k_y-directions. We will also discuss the temperature and chemical potential dependence of the single-particle decay rate.Comment: 4 pages, 3 figures, revtex

    Do Linear Dispersions of Classical Waves Mean Dirac Cones?

    Full text link
    By using the \vec{k}\cdot\vec{p} method, we propose a first-principles theory to study the linear dispersions in phononic and photonic crystals. The theory reveals that only those linear dispersions created by doubly-degenerate states can be described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of -\pi. Triply-degenerate states can also generate Dirac-like cone dispersions, but the wavefunctions transform like a spin-1 particle and the Berry phase is zero. Our theory is capable of predicting accurately the linear slopes of Dirac/Dirac-like cones at various symmetry points in a Brilliouin zone, independent of frequency and lattice structure

    Phase Stability in the Two dimensional Anisotropic Boson Hubbard Hamiltonian

    Get PDF
    The two dimensional square lattice hard-core boson Hubbard model with near neighbor interactions has a `checkerboard' charge density wave insulating phase at half-filling and sufficiently large intersite repulsion. When doped, rather than forming a supersolid phase in which long range charge density wave correlations coexist with a condensation of superfluid defects, the system instead phase separates. However, it is known that there are other lattice geometries and interaction patterns for which such coexistence takes place. In this paper we explore the possibility that anisotropic hopping or anisotropic near neighbor repulsion might similarly stabilize the square lattice supersolid. By considering the charge density wave structure factor and superfluid density for different ratios of interaction strength and hybridization in the x^\hat x and y^\hat y directions, we conclude that phase separation still occurs.Comment: 8 pages, 11 figure

    Unexpected cell type-dependent effects of autophagy on polyglutamine aggregation revealed by natural genetic variation in C. elegans.

    Get PDF
    BACKGROUND: Monogenic protein aggregation diseases, in addition to cell selectivity, exhibit clinical variation in the age of onset and progression, driven in part by inter-individual genetic variation. While natural genetic variants may pinpoint plastic networks amenable to intervention, the mechanisms by which they impact individual susceptibility to proteotoxicity are still largely unknown. RESULTS: We have previously shown that natural variation modifies polyglutamine (polyQ) aggregation phenotypes in C. elegans muscle cells. Here, we find that a genomic locus from C. elegans wild isolate DR1350 causes two genetically separable aggregation phenotypes, without changing the basal activity of muscle proteostasis pathways known to affect polyQ aggregation. We find that the increased aggregation phenotype was due to regulatory variants in the gene encoding a conserved autophagy protein ATG-5. The atg-5 gene itself conferred dosage-dependent enhancement of aggregation, with the DR1350-derived allele behaving as hypermorph. Surprisingly, increased aggregation in animals carrying the modifier locus was accompanied by enhanced autophagy activation in response to activating treatment. Because autophagy is expected to clear, not increase, protein aggregates, we activated autophagy in three different polyQ models and found a striking tissue-dependent effect: activation of autophagy decreased polyQ aggregation in neurons and intestine, but increased it in the muscle cells. CONCLUSIONS: Our data show that cryptic natural variants in genes encoding proteostasis components, although not causing detectable phenotypes in wild-type individuals, can have profound effects on aggregation-prone proteins. Clinical applications of autophagy activators for aggregation diseases may need to consider the unexpected divergent effects of autophagy in different cell types

    Stress release mechanisms for Cu on Pd(111) in the submonolayer and monolayer regimes

    Get PDF
    We study the strain relaxation mechanisms of Cu on Pd(111) up to the monolayer regime using two different computational methodologies, basin-hopping global optimization and energy minimization with a repulsive bias potential. Our numerical results are consistent with experimentally observed layer-by-layer growth mode. However, we find that the structure of the Cu layer is not fully pseudomorphic even at low coverages. Instead, the Cu adsorbates forms fcc and hcp stacking domains, separated by partial misfit dislocations. We also estimate the minimum energy path and energy barriers for transitions from the ideal epitaxial state to the fcc-hcp domain pattern.Comment: 4 pages, 4 figure

    Equilibrium shape and dislocation nucleation in strained epitaxial nanoislands

    Full text link
    We study numerically the equilibrium shapes, shape transitions and dislocation nucleation of small strained epitaxial islands with a two-dimensional atomistic model, using simple interatomic pair potentials. We first map out the phase diagram for the equilibrium island shapes as a function of island size (up to N = 105 atoms) and lattice misfit with the substrate and show that nanoscopic islands have four generic equilibrium shapes, in contrast with predictions from the continuum theory of elasticity. For increasing substrate-adsorbate attraction, we find islands that form on top of a finite wetting layer as observed in Stranski-Krastanow growth. We also investigate energy barriers and transition paths for transitions between different shapes of the islands and for dislocation nucleation in initially coherent islands. In particular, we find that dislocations nucleate spontaneously at the edges of the adsorbate-substrate interface above a critical size or lattice misfit.Comment: 4 pages, 3 figures, uses wrapfig.sty and epsfig.st
    corecore