23,818 research outputs found

    Using computer simulation in operating room management: impacts of information quality on process performance

    Get PDF
    High quality information has a significant impact on improving operation performance and patient satisfaction, as well as resolving patient disputes. Based on the analysis of the perioperative process, information quality is considered as an important contributory factor in improving patient throughput. In this paper, we propose a conceptual framework to use computer simulations in modeling information flow of hospital process for operating room management (ORM). Additionally, we conduct simulation studies in different levels of the information quality for ORM. The results of our studies provide evidence that information quality can drive process performance in several phases of the ORM

    Interface Effects on Tunneling Magnetoresistance in Organic Spintronics with Flexible Amine-Au Links

    Full text link
    Organic spintronics is a promising emerging field, but the sign of the tunneling magnetoresistance (TMR) is highly sensitive to interface effects, a crucial hindrance to applications. A key breakthrough in molecular electronics was the discovery of amine-Au link groups that give reproducible conductance. Using first principles calculations, we predict that amine-Au links give improved reproducibility in organic spintronics junctions with Au-covered Fe leads. The Au layers allow only states with sp character to tunnel into the molecule, and the flexibility of amine-Au links results in a narrow range of TMR for fixed number of Au layers. Even as the Au thickness changes, TMR remains positive as long as the number of Au layers is the same on both sides of the junction. Since the number of Au layers on Fe surfaces or Fe nanoparticles can now be experimentally controlled, amine-Au links provide a route towards robust TMR in organic spintronics

    Chiral anomaly of Weyl magnons in stacked honeycomb ferromagnets

    Full text link
    Chiral anomaly of Weyl magnons (WMs), featured by nontrivial band crossings at paired Weyl nodes (WNs) of opposite chirality, is investigated. It is shown that WMs can be realized in stacked honeycomb ferromagnets. Using the Aharonov-Casher effect that is about the interaction between magnetic moments and electric fields, the magnon motion in honeycomb layers can be quantized into magnonic Landau levels (MLLs). The zeroth MLL is chiral so that unidirectional WMs propagate in the perpendicular (to the layer) direction for a given WN under a magnetic field gradient from one WN to the other and change their chiralities, resulting in the magnonic chiral anomaly (MCA). A net magnon current carrying spin and heat through the zeroth MLL depends linearly on the magnetic field gradient and the electric field gradient in the ballistic transport.Comment: 8 pages, 8 figure
    corecore