69 research outputs found

    Anti-Inflammatory Mechanism of An Alkaloid Rutaecarpine in LTA-Stimulated RAW 264.7 Cells: Pivotal Role on NF-κB and ERK/p38 Signaling Molecules

    No full text
    Lipoteichoic acid (LTA) is a key cell wall component and virulence factor of Gram-positive bacteria. LTA contributes a major role in infection and it mediates inflammatory responses in the host. Rutaecarpine, an indolopyridoquinazolinone alkaloid isolated from Evodia rutaecarpa, has shown a variety of fascinating biological properties such as anti-thrombotic, anticancer, anti-obesity and thermoregulatory, vasorelaxing activity. It has also potent effects on the cardiovascular and endocrine systems. Herein, we investigated rutaecarpine’s (Rut) anti-inflammatory effects in LTA-stimulated RAW macrophage cells. The Western blot and spectrophotometric results revealed that Rut inhibited the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and interleukin (IL)-1β in the LTA-induced macrophage cells. Successively, our mechanistic studies publicized that Rut inhibited LTA-induced phosphorylation of mitogen-activated protein kinase (MAPK) including the extracellular signal-regulated kinase (ERK), and p38, but not c-Jun NH2-terminal kinase (JNK). In addition, the respective Western blot and confocal image analyses exhibited that Rut reserved nuclear transcription factor kappa-B (NF-κB) by hindering inhibitor of nuclear factor κB-α (IκBα) and NF-κB p65 phosphorylation and p65 nuclear translocation. These results indicate that Rut exhibits its anti-inflammatory effects mainly through attenuating NF-κB and ERK/p38 signaling pathways. Overall, this result suggests that Rut could be a potential therapeutic agent for the treatment of Gram-positive bacteria induced inflammatory diseases

    Recent Advances in Glycyrrhiza glabra (Licorice)-Containing Herbs Alleviating Radiotherapy- and Chemotherapy-Induced Adverse Reactions in Cancer Treatment

    No full text
    Cancers represent a significant cause of morbidity and mortality worldwide. They also impose a large economic burden on patients, their families, and health insurance systems. Notably, cancers and the adverse reactions to their therapeutic options, chemotherapy and radiotherapy, dramatically affect the quality of life of afflicted patients. Therefore, developing approaches to manage chemotherapy- and radiotherapy-induced adverse reactions gained greater attention in recent years. Glycyrrhiza glabra (licorice), a perennial plant that is one of the most frequently used herbs in traditional Chinese medicine, has been heavily investigated in relation to cancer therapy. Licorice/licorice-related regimes, used in combination with chemotherapy, may improve the adverse effects of chemotherapy. However, there is little awareness of licorice-containing herbs alleviating reactions to radiotherapy and chemotherapy, or to other induced adverse reactions in cancer treatment. We aimed to provide a descriptive review, and to emphasize the possibility that licorice-related medicines could be used as an adjuvant regimen with chemotherapy to improve quality of life (QoL) and to reduce side effects, thus, improving compliance with chemotherapy. The experimental method involved searching different databases, including PubMed, the Cochrane Library, and Wang Fang database, as of May 2022, to identify any relevant studies. Despite a lack of high-quality and large-scale randomized controlled trials, we still discovered the potential benefits of licorice-containing herbs from published clinical studies. These studies find that licorice-containing herbs, and their active ingredients, reduce the adverse reactions caused by chemotherapy and radiotherapy, and improve the QoL of patients. This comprehensive review will serve as a cornerstone to encourage more scientists to evaluate and develop effective Traditional Chinese medicine prescriptions to improve the side effects of chemotherapy and radiation therapy

    Metformin Serves as a Novel Drug Treatment for Arterial Thrombosis: Inhibitory Mechanisms on Collagen-Induced Human Platelet Activation

    No full text
    Metformin is widely used as first-line medication for type 2 diabetes (T2D), the main disease comorbid with kidney disease, cardiovascular diseases (CVDs), and retinopathy. Platelets are crucial in platelet-dependent arterial thrombosis, which causes CVDs and cerebrovascular diseases. Research indicates that metformin may improve these diseases; metformin reportedly reduced platelet activation in rats. However, no reports have included human platelets. We investigated the mechanisms underlying metformin’s effects on platelet activation by using human platelets and evaluated its in vivo effectiveness in experimental mice. Metformin inhibited platelet aggregation stimulated by collagen but not by arachidonic acid, U46619, or thrombin. Metformin suppressed ATP release, [Ca2+]i mobilization, and P-selectin expression, as well as phospholipase C (PLC)γ2/protein kinase C (PKC), p38 mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK3β) phosphorylation. Metformin did not affect vasodilator-stimulated phosphoprotein (VASP) phosphorylation. In the animal studies, metformin reduced acute pulmonary thromboembolism mortality without increasing bleeding times. These results provide insights into the role and mechanisms of metformin in human platelet activation. Metformin decreased platelet activation by interfering with the PLCγ2/PKC, PI3K/Akt/GSK3β, and p38 MAPK pathways through a VASP-independent mechanism. Metformin demonstrates promise as a new class of antiplatelet agent that can inhibit platelet activation

    Effect of metformin on outcomes of patients treated with immune checkpoint inhibitors: a retrospective cohort study.

    No full text
    BACKGROUND: Immune checkpoint inhibitors have transformed the treatment landscape of cancer treatment, but only a fraction of patients responds to treatment, leading to an increasing effort to repurpose clinically approved medications to augment ICI therapy. Metformin has been associated with improved survival outcomes in patients undergoing conventional chemotherapy. However, whether metformin provides survival benefits in patients receiving immune checkpoint inhibitors (ICIs) is unknown. METHODS: We performed a retrospective cohort study at two tertiary referral centers in Taiwan. All adult diabetes mellitus patients who were treated with ICIs between January 2015 and December 2021 were included. The primary and secondary outcomes were overall survival (OS) and progression-free survival (PFS), respectively. RESULTS: In total, 878 patients were enrolled in our study, of which 86 patients used metformin and 78 patients used non-metformin diabetes medications. Compared with non-users, metformin users had a longer median OS (15.4 [IQR 5.6-not reached] vs. 6.1 [IQR, 0.8-21.0] months, P = 0.003) and PFS (5.1 [IQR 2.0-14.3] vs. 1.9 [IQR 0.7-8.6] months, P = 0.041). In a univariate Cox proportional hazard analysis, the use of metformin was associated with a reduction in the risk of mortality (HR: 0.53 [95% confidence interval: 0.35-0.81], P = 0.004) and disease progression (HR: 0.69 [95% CI 0.49-0.99], P = 0.042). The use of metformin remained associated with a lower risk of mortality after adjusting for baseline variables such as age, cancer stage, and underlying comorbidities (OS, HR: 0.55 [95% CI 0.34-0.87], P = 0.011). Similarly, the use of metformin was associated with a lower risk of disease progression. Importantly, the use of metformin before ICI initiation was not associated with a reduction in mortality (HR: 0.61 [95% CI 0.27-1.42], P = 0.25) or disease progression (HR: 0.69 [95% CI 0.33-1.43], P = 0.32). CONCLUSION: The use of metformin is associated with survival benefits in patients undergoing immunotherapy. Prospective clinical trials are warranted to define the role of metformin in augmenting immunotherapy
    corecore