28,989 research outputs found

    Convergence-Optimal Quantizer Design of Distributed Contraction-based Iterative Algorithms with Quantized Message Passing

    Full text link
    In this paper, we study the convergence behavior of distributed iterative algorithms with quantized message passing. We first introduce general iterative function evaluation algorithms for solving fixed point problems distributively. We then analyze the convergence of the distributed algorithms, e.g. Jacobi scheme and Gauss-Seidel scheme, under the quantized message passing. Based on the closed-form convergence performance derived, we propose two quantizer designs, namely the time invariant convergence-optimal quantizer (TICOQ) and the time varying convergence-optimal quantizer (TVCOQ), to minimize the effect of the quantization error on the convergence. We also study the tradeoff between the convergence error and message passing overhead for both TICOQ and TVCOQ. As an example, we apply the TICOQ and TVCOQ designs to the iterative waterfilling algorithm of MIMO interference game.Comment: 17 pages, 9 figures, Transaction on Signal Processing, accepte

    Distributive Stochastic Learning for Delay-Optimal OFDMA Power and Subband Allocation

    Full text link
    In this paper, we consider the distributive queue-aware power and subband allocation design for a delay-optimal OFDMA uplink system with one base station, KK users and NFN_F independent subbands. Each mobile has an uplink queue with heterogeneous packet arrivals and delay requirements. We model the problem as an infinite horizon average reward Markov Decision Problem (MDP) where the control actions are functions of the instantaneous Channel State Information (CSI) as well as the joint Queue State Information (QSI). To address the distributive requirement and the issue of exponential memory requirement and computational complexity, we approximate the subband allocation Q-factor by the sum of the per-user subband allocation Q-factor and derive a distributive online stochastic learning algorithm to estimate the per-user Q-factor and the Lagrange multipliers (LM) simultaneously and determine the control actions using an auction mechanism. We show that under the proposed auction mechanism, the distributive online learning converges almost surely (with probability 1). For illustration, we apply the proposed distributive stochastic learning framework to an application example with exponential packet size distribution. We show that the delay-optimal power control has the {\em multi-level water-filling} structure where the CSI determines the instantaneous power allocation and the QSI determines the water-level. The proposed algorithm has linear signaling overhead and computational complexity O(KN)\mathcal O(KN), which is desirable from an implementation perspective.Comment: To appear in Transactions on Signal Processin

    Time-varying Yield Distributions and the U.S. Crop Insurance Program

    Get PDF
    The objective of this study is to evaluate and model the yield risk associated with major agricultural commodities in the U.S. We are particularly concerned with the nonstationary nature of the yield distribution, which primarily arises because of technological progress and changing environmental conditions. Precise risk assessment depends on the accuracy of modeling this distribution. This problem becomes more challenging as the yield distribution changes over time, a condition that holds for nearly all major crops. A common approach to this problem is based on a two-stage method in which the yield is first detrended and then the estimated residuals are treated as observed data and modeled using various parametric or nonparametric methods. We propose an alternative parametric model that allows the moments of the yield distributions to change with time. Several model selection techniques suggest that the proposed time-varying model outperforms more conventional models in terms of in-sample goodness-of-fit, out-of- sample predictive power and the prediction accuracy of insurance premium rates.Risk and Uncertainty,

    Low Complexity Delay-Constrained Beamforming for Multi-User MIMO Systems with Imperfect CSIT

    Full text link
    In this paper, we consider the delay-constrained beamforming control for downlink multi-user MIMO (MU- MIMO) systems with imperfect channel state information at the transmitter (CSIT). The delay-constrained control problem is formulated as an infinite horizon average cost partially observed Markov decision process. To deal with the curse of dimensionality, we introduce a virtual continuous time system and derive a closed-form approximate value function using perturbation analysis w.r.t. the CSIT errors. To deal with the challenge of the conditional packet error rate (PER), we build a tractable closed- form approximation using a Bernstein-type inequality. Based on the closed-form approximations of the relative value function and the conditional PER, we propose a conservative formulation of the original beamforming control problem. The conservative problem is non-convex and we transform it into a convex problem using the semidefinite relaxation (SDR) technique. We then propose an alternating iterative algorithm to solve the SDR problem. Finally, the proposed scheme is compared with various baselines through simulations and it is shown that significant performance gain can be achieved.Comment: 14 pages, 7 figures, 1 table. This paper has been accepted by the IEEE Transactions on Signal Processin

    A Robust Study of Regression Methods for Crop Yield Data

    Get PDF
    The objective of this study is to evaluate the robust regression method when detrending the crop yield data. Using a Monte Carlo simulation method, the performance of the proposed Time-Varying Beta method is compared with the previous study of OLS, M-estimator and MM-estimator in an application of crop yield modeling. We analyze the properties of these estimators for outlier-contaminated data in both symmetric and skewed distribution case. The application of these estimation methods is illustrated in an agricultural insurance analysis. The consequence of obtaining more accurate detrending method will offer the potential to improve the accuracy of models used in rating crop insurance contracts.Research Methods/ Statistical Methods, Risk and Uncertainty,

    Directional Spatial Dependence and Its Implications for Modeling Systemic Yield Risk

    Get PDF
    The objective of this study is to evaluate and model the spatial dependence of systemic yield risk. Various spatial autoregressive models are explored to account for county level dependence of crop yields. The results show that the time trend parameters of yields are correlated across spaces and the spatial correlations are changing with time. In addition, the spatial correlation of neighborhood in west/east direction is stronger than that of north/south direction. The information of the spatial dependence of yield risk will help the construction of better risk management programs for protecting producers from systemic yield risks.Spatial Autoregressive Model, Spatial Dependence, Risk and Uncertainty,
    corecore