57 research outputs found

    Genomewide Analysis of Carotenoid Cleavage Dioxygenases in Unicellular and Filamentous Cyanobacteria

    Get PDF
    Carotenoid cleavage dioxygenases (CCDs) are a group of enzymes that catalyze the oxidative cleavage steps from carotenoids to various carotenoid cleavage products. Some ccd genes have been identified and encoded enzymes functionally characterized in many higher plants, but little in cyanobacteria. We performed a comparative analysis of ccd sequences and explored their distribution, classification, phylogeny, evolution, and structure among 37 cyanobacteria. Totally 61 putative ccd sequences were identified, which are abundant in Acaryochloris marina MBIC 11017, filamentous N2-fixing cyanobacteria, and unicellular cyanobacterial Cyanothece. According to phylogenetic trees of 16S rDNA and CCD, nced and ccd8 genes occur later than the divergence of ccd7, apco, and ccd1. All CCD enzymes share conserved basic structure domains constituted by a single loop formed with seven Ξ²-strands and one helix. In this paper, a general framework of sequence-function-evolution connection for the ccd has been revealed, which may provide new insight for functional investigation

    Transcriptomic analysis of Synechocystis sp PCC6803 under low-temperature stress

    Get PDF
    In this study, cDNA microarrays were developed from 3569 mRNA reads to analyze the expression profiles of the transcriptomes of Synechocystis sp. PCC6803 under low temperature (LT) stress. Among the genes on the cDNA microarrays, 899 LT-affected genes exhibited a 1.5-fold (or greater) difference in expression compared with the genes from normal unstressed Synechocystis sp. PCC6803. Of the differentially expressed genes, 353 were up-regulated and 246 were down-regulated. The results showed that genes involved in photosynthesis were activated at LT (10A degrees C), including genes for photosystem I, photosystem II, photosynthetic electron transport, and cytochrome b6/f complex. Moreover, desB, one of four genes that encode the fatty acid desaturases, was also induced by LT. However, the LT conditions to some degree enhanced the transcription of some genes. In addition, LT (10A degrees C) may reduce cellular motility by regulating the transcription of spkA (sll1575), a serine/threonine protein kinase. The results reported in this study may contribute to a better understanding of the responses of the Synechocystis cell to LT, including pathways involved in photosynthesis and repair.In this study, cDNA microarrays were developed from 3569 mRNA reads to analyze the expression profiles of the transcriptomes of Synechocystis sp. PCC6803 under low temperature (LT) stress. Among the genes on the cDNA microarrays, 899 LT-affected genes exhibited a 1.5-fold (or greater) difference in expression compared with the genes from normal unstressed Synechocystis sp. PCC6803. Of the differentially expressed genes, 353 were up-regulated and 246 were down-regulated. The results showed that genes involved in photosynthesis were activated at LT (10A degrees C), including genes for photosystem I, photosystem II, photosynthetic electron transport, and cytochrome b6/f complex. Moreover, desB, one of four genes that encode the fatty acid desaturases, was also induced by LT. However, the LT conditions to some degree enhanced the transcription of some genes. In addition, LT (10A degrees C) may reduce cellular motility by regulating the transcription of spkA (sll1575), a serine/threonine protein kinase. The results reported in this study may contribute to a better understanding of the responses of the Synechocystis cell to LT, including pathways involved in photosynthesis and repair

    Vertical adaptive radiation in ocean Prochlorococcus: Evolutionary implications of the Chl b/a ratio from molecular evidence

    No full text
    Prochlorococcus is a marine cyanobacterium of global significance. Two ecotypes are adapted to either high-light (HL) or low-light (LL) conditions. The ratio between chlorophyll (Chl) a and b is a distinguishing characteristic of these two ecotypes. However, how this ratio evolved in Prochlorococcus during this ecotype differentiation remains unclear. Our analyses reveal that the ancestor of Prochlorococcus was typically low-light adapted. The LL ecotype showed a stagnant evolution, and the HL ecotype was recently diverged. There was an adaptive radiation after directional evolution in the Chl b/a ratio regulation. Recombination in chlorophyllide a oxygenase (CAO) and positive selection on Clp protease contributed to the directional evolution of Prochlorococcus. The recombinant fragments of CAO were correlated with a large group of shared coevolving sites. Evidence of positive selection was found in both subunits of Clp. Chl b/a ratio evolution, as annotated by molecular evidence, appears to be among the crucial reasons that explain how Prochlorococcus has become the dominant photosynthetic organism in the ocean. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved

    IA-Mask R-CNN: Improved Anchor Design Mask R-CNN for Surface Defect Detection of Automotive Engine Parts

    No full text
    The detection of surface defects on automotive engine parts is an important part of automobile manufacturing quality assurance. The traditional detection methods rely on manual inspection and can be inaccurate and inefficient, while the existing deep learning-based methods, such as the Mask R-CNN detection method, have insufficient precision for detecting minor defects since the anchor scales design does not consider small defects. To overcome these shortcomings, this paper proposes an IA-Mask R-CNN detection method with an improved anchor scales design. First, an image dataset that contains 560 pictures of surface defects of automotive engine parts is established using a 1080P HDMI high-definition digital microscope capable of recording three million real pixels and labeled manually. Then, the anchor scales suitable for the surface defect detection of automotive engine parts are determined by labeled data analysis and used to improve the anchor design in Mask R-CNN. Finally, the proposed method is compared experimentally with the Faster R-CNN and Mask R-CNN, and qualitative and quantitative analyses are conducted. The experimental results show that, without increasing the number of parameters or training time of the Mask R-CNN, the proposed method performed better in detecting minor, as well as larger defects than the other detection methods

    Molecular Evolution of Lycopene Cyclases Involved in the Formation of Carotenoids in Eukaryotic Algae

    No full text
    Carotenoids play crucial roles in structure and function of the photosynthetic apparatus of bacteria, algae, and higher plants. The formation of carotenoids from lycopene is catalyzed by the enzyme lycopene cyclase (LCY), which is structurally and functionally conserved in all organisms. A comparative genomic analysis regarding the LCY revealed that the higher plant (Arabidopsis thaliana) and the green alga (Ostreococcus sp. RCC809, Ostreococcus tauri, Ostreococcus lucimarinus, Micromonas sp. RCC299, Micromonas pusiua, Chlorella vulgaris, Volvox carteri, and Coccomyxa sp. C-169) possess two different LCY (beta- and epsilon-type). This indicated that an ancient gene duplication event must have occurred, which produced two classes of LCY in algae. However, some other green alga retained only one class of LCY, such as Haematococcus pluvialis (beta), Dunaliella salina (beta), Chlamydomonas reinhardtii (epsilon), and Chlorella sp. NC64A (epsilon), and the other gene copy was lost in these species. Furthermore, the similar LCY lost occurred in red alga (Cyanidioschyzon merolae) and Heterokontophyta (Phaeodactylum tricornutum and Thalassiosira pseudonana), which possess only the LCYB. In addition, the protein sequence of LCYB is highly similar to capsanthin-capsorubin synthase (CCS), which is another carotenogenic enzyme of plants. As a result, it is proposed that the CCS evolved from a duplicated LCYB. The discovery of two classes of LCY families in some algae suggests that carotenoid biosynthesis is differentially regulated in response to development and environmental stress in these algae, like members of LCY families are differentially regulated during development or stress in some higher plants.Carotenoids play crucial roles in structure and function of the photosynthetic apparatus of bacteria, algae, and higher plants. The formation of carotenoids from lycopene is catalyzed by the enzyme lycopene cyclase (LCY), which is structurally and functionally conserved in all organisms. A comparative genomic analysis regarding the LCY revealed that the higher plant (Arabidopsis thaliana) and the green alga (Ostreococcus sp. RCC809, Ostreococcus tauri, Ostreococcus lucimarinus, Micromonas sp. RCC299, Micromonas pusiua, Chlorella vulgaris, Volvox carteri, and Coccomyxa sp. C-169) possess two different LCY (beta- and epsilon-type). This indicated that an ancient gene duplication event must have occurred, which produced two classes of LCY in algae. However, some other green alga retained only one class of LCY, such as Haematococcus pluvialis (beta), Dunaliella salina (beta), Chlamydomonas reinhardtii (epsilon), and Chlorella sp. NC64A (epsilon), and the other gene copy was lost in these species. Furthermore, the similar LCY lost occurred in red alga (Cyanidioschyzon merolae) and Heterokontophyta (Phaeodactylum tricornutum and Thalassiosira pseudonana), which possess only the LCYB. In addition, the protein sequence of LCYB is highly similar to capsanthin-capsorubin synthase (CCS), which is another carotenogenic enzyme of plants. As a result, it is proposed that the CCS evolved from a duplicated LCYB. The discovery of two classes of LCY families in some algae suggests that carotenoid biosynthesis is differentially regulated in response to development and environmental stress in these algae, like members of LCY families are differentially regulated during development or stress in some higher plants

    Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution.</p> <p>Results</p> <p>Overall 244 putative <it>prx</it> genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, <it>Acaryochloris marina</it> MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all <it>Prochlorococcus</it> and marine <it>Synechococcus</it> strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as <it>prx</it> gene family members and the others were already annotated as <it>prx</it> genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s <it>rRNA</it>.</p> <p>Conclusions</p> <p>The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins share highly similar structures, implying that these genes may originate from a common ancestor. In this study, a general framework of the sequence-structure-function connections of the PRXs was revealed, which may facilitate functional investigations of PRXs in various organisms.</p

    Genome-Wide Analysis of Biotin Biosynthesis in Eukaryotic Photosynthetic Algae

    No full text
    Biotin is a cofactor responsible for carbon dioxide transfer in several carboxylase enzymes, which play a significant role in various metabolic reactions such as fatty acid synthesis, branched chain amino acid catabolism, and gluconeogenesis. Biotin is also involved in citric acid cycle, which is the process of biochemical energy generation during aerobic respiration. Though the function of biotin in the growth of algae has been extensively investigated, little is known about the biosynthetic routes of biotin in the algal kingdom. In the present study, 44 biotin biosynthesis-related genes were identified from 14 eukaryotic photosynthetic algal genomes by BLASTP and TBLASN programs. A comprehensive analysis was performed to characterize distribution, phylogeny, structure domains, and coevolution patterns of those genes. Forty-four biotin biosynthesis-related enzymes (BBREs) were found to be distributed in three groups: 7-keto-8-aminopelargonic acid synthase, diaminopelargonic acid synthase/dethiobiotin synthetase, and biotin synthase. Structure domains were considerably conserved among the subfamilies of BBREs. The intramolecular coevolutionary sites are widely distributed in biotin synthase. The present study provides new insights into the origin and evolution of biotin biosynthetic pathways in eukaryotic photosynthetic algae. Furthermore, the characterization of biotin biosynthesis-related genes from algae will promote the identification and functional studies of BBREs.Biotin is a cofactor responsible for carbon dioxide transfer in several carboxylase enzymes, which play a significant role in various metabolic reactions such as fatty acid synthesis, branched chain amino acid catabolism, and gluconeogenesis. Biotin is also involved in citric acid cycle, which is the process of biochemical energy generation during aerobic respiration. Though the function of biotin in the growth of algae has been extensively investigated, little is known about the biosynthetic routes of biotin in the algal kingdom. In the present study, 44 biotin biosynthesis-related genes were identified from 14 eukaryotic photosynthetic algal genomes by BLASTP and TBLASN programs. A comprehensive analysis was performed to characterize distribution, phylogeny, structure domains, and coevolution patterns of those genes. Forty-four biotin biosynthesis-related enzymes (BBREs) were found to be distributed in three groups: 7-keto-8-aminopelargonic acid synthase, diaminopelargonic acid synthase/dethiobiotin synthetase, and biotin synthase. Structure domains were considerably conserved among the subfamilies of BBREs. The intramolecular coevolutionary sites are widely distributed in biotin synthase. The present study provides new insights into the origin and evolution of biotin biosynthetic pathways in eukaryotic photosynthetic algae. Furthermore, the characterization of biotin biosynthesis-related genes from algae will promote the identification and functional studies of BBREs

    Molecular diversity of Enteromorpha from the coast of Yantai: a dual-marker assessment

    No full text
    We collected nine Enteromorpha specimens from the coast of Yantai and evaluated their diversity based on analyses of their ITS (internal transcribed spacer) and 5S rDNA NTS (non-transcribed spacer) sequences. The ITS sequences showed slight nucleotide divergences between Enteromorpha linza and Enteromorpha prolifera. In contrast, multiple highly variable regions were found in the ITS region of Enteromorpha flexuosa. In general, there were more variable sites in the NTS region than in the ITS region in the three species. The variations in 5S rDNA NTS sequences indicated that the molecular diversity of Enteromorpha from the coast of Yantai is very high. However, a phylogenetic tree constructed using 5S rDNA NTS sequence data indicated that genetic differences were not directly related to geographical distribution

    Identification of LINC00654-NINL Regulatory Axis in Diffuse Large B-Cell Lymphoma In Silico Analysis

    Get PDF
    Background: The long non-coding RNA (lncRNA)-mRNA regulation network plays an important role in the development of diffuse large B-cell lymphoma (DLBCL). This study uses bioinformatics to find an innovative regulation axis in DLBCL that will provide a positive reference for defining the mechanism of disease progression. Methods: Batch Cox regression was used to screen prognosis-related lncRNAs, and a random forest model was used to identify hub lncRNA. The clinical value of the lncRNA was evaluated and Spearman correlation analysis was used to predict the candidate target genes. Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were used to define the biological function of the lncRNA. A batch Cox regression model, expression validation, and Spearman correlation analysis were used to select the best downstream target genes. The expression and prognostic value validation of this gene was conducted using public data. Gene Set Enrichment Analysis (GSEA) was performed to explore potential mechanisms for this gene in DLBCL. Results: LINC00654 was identified as the hub lncRNA and 1443 mRNAs were selected as downstream target genes of the lncRNA. The target genes were enriched in the regulation of GTPase and Notch signaling pathways. After validation, the ninein-like (NINL) gene was selected as the potential target of LINC00654 and the LINC00654-NINL axis was constructed. Patients with better responses to therapy were shown to have high NINL gene expression (p-value = 0.036). NINL also had high expression in the DB cell line and low expression in the OCILY3 cell line. Survival analysis showed that high NINL expression was a risk factor for overall survival (OS) and disease-specific survival (DSS) within older patients and those with advanced-stage cancer. GSEA results showed that NINL may be involved in neutrophil-mediated immunity and NF-ΞΊB signaling. Conclusion: This study identified a novel LncRNA00654-NINL regulatory axis in DLBCL, which could provide a favorable reference for exploring the possible mechanisms of disease progression
    • …
    corecore