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  Abstract        In this study, cDNA microarrays were developed from 3569 mRNA reads to analyze the 
expression profi les of the transcriptomes of  Synechocystis  sp. PCC6803 under low temperature (LT) 
stress. Among the genes on the cDNA microarrays, 899 LT-affected genes exhibited a 1.5-fold (or greater) 
difference in expression compared with the genes from normal unstressed  Synechocystis  sp. PCC6803. 
Of the differentially expressed genes, 353 were up-regulated and 246 were down-regulated. The results 
showed that genes involved in photosynthesis were activated at LT (10°C), including genes for photosystem 
I, photosystem II, photosynthetic electron transport, and cytochrome b6/f complex. Moreover,  desB , one of 
four genes that encode the fatty acid desaturases, was also induced by LT. However, the LT conditions to 
some degree enhanced the transcription of some genes. In addition, LT (10°C) may reduce cellular motility 
by regulating the transcription of  spkA  ( sll1575 ), a serine/threonine protein kinase. The results reported in 
this study may contribute to a better understanding of the responses of the  Synechocystis  cell to LT, including 
pathways involved in photosynthesis and repair. 

  Keyword :  Synechocystis  sp. PCC6803; cyanobacteria; cDNA microarray; transcriptomics; low temperature 
stress 

  Abbreviation : Hik: histidine kinase; STK: serine/threonine protein kinase; Rre: response regulator; LT: 
low-temperature stress; PSI: photosystem I; PSII: photosystem II; Cyt.b6: cytochrome B6/f 
complex; PET: photosynthetic electron transport 

 1 INTRODUCTION 

 Low temperature (LT) is an important abiotic 
factor for all living organisms. LT induces the 
expression of specifi c subsets of genes involved in 
acclimation to a downward shift in temperature 
(Thieringer et al., 1998; Browse and Xin, 2001). For 
example, cold-shock genes ( csp ) in  Escherichia     coli  
(Jones et al., 1987) and  Bacillus subtilis  (Willimsky et 
al., 1992),  cor  and  cas  genes in plants (Gilmour et al., 
1992; Wolfraim et al., 1993), and genes that encode 
fatty acid desaturases in cyanobacteria (Wada et al., 
1990; Gibson et al., 1994; Murata and Wada, 1995), 
plants (Gibson et al., 1994), protozoan (Nakashima et 
al., 1996), dimorphic fungus (Laoteng et al., 1999), 

and fi sh (Tiku et al., 1996), have been shown to be 
essential for cell acclimation to LT. However, the 
mechanisms that organisms use for the perception and 
transduction of LT signals are not clearly understood. 
Importantly, cyanobacteria possess features of both 
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bacteria and plants, which makes them attractive 
organisms for studies into their signal transduction 
systems. The unicellular cyanobacterium 
 Synechocystis  has become a model organism for 
studying the biochemistry and molecular biology of 
stress responses in photosynthetic organisms.  

 Changes in membrane fl uidity, lipid composition, 
and physiological activity induced by LT have been 
studied in several strains of cyanobacteria, including 
 Synechocystis  sp. PCC 6803 (hereafter  Synechocystis ) 
(Murata, 1989). Previous studies have found that LT 
stresses imposed on  Synechocystis  appear to be 
perceived fi rst via changes in membrane lipids (Vigh 
et al., 1993; Los et al., 1997; Murata and Los, 1997). 
Moreover, the DesK/DesR system was found to sense 
and transduce the LT signal, and then control the 
transcription of the fatty acid desaturase ( des ) gene 
for delta 5 desaturase, uniquely and stringently in  B .  
  subtilis  (Mansilla and de Mendoza, 2005). 

 It has been proposed that LT stimuli may be 
perceived by histidine kinases (Hiks) and/or serine/
threonine protein kinases (STKs), which are localized 
in the cytoplasmic membrane or in the cytosol of 
some prokaryotes (Appleby et al., 1996; Mizuno et 
al., 1996; Zhang et al., 1998), yeast (Maeda et al., 
1994), and plants (Chang et al., 1993; Kakimoto, 
1996). In other words, temperature-inducible changes 
in membrane fl uidity may be mediated by 
transmembrane Hik(s) or STK(s).   In 1996, the 
complete nucleotide sequence of the  Synechocystis  
genome was determined (Kaneko et al., 1996), and, in 
2003, the plasmid sequences (including 397 genes) 
were reported (Kato et al., 2003). The plasmid genes 
were not commonly included in DNA microarrays. 
Forty-four and three putative genes encoding Hiks 
have been predicted in the  Synechocystis  genome 
(Hik1–Hik44) (Kaneko et al., 1996; Mizuno et al., 
1996) and plasmids (Kaneko et al., 2003), respectively, 
In addition, 42 and three putative genes encoding the 
response regulators (Rres) have been predicted in the 
genome and plasmids, respectively. Moreover, among 
the 12 putative genes that encode the STKs in 
 Synechocystis , seven encode proteins that belong to 
the PKN2 subfamily of STKs, namely,  spkA  ( sll1574 –
 1575 ),  spkB  ( slr1697 ),  spkC  ( slr0599 ),  spkD  ( sll0776 ),  
spkE  ( slr1443 ),  spkF  ( slr1225 ), and  spkG    ( slr0152 ) 
(Kamei et al., 2003) (CyanoBase; http://genome.
microbedb.jp/cyanobase/Synechocystis). Five genes 
( spkH ,  spkI ,  spkJ ,  spkK , and  spkL ) that encode 
proteins of the ABC1 subfamily of STKs (Leonard et 
al., 1998; Shi et al., 1998). SpkA, SpkB, SpkC, SpkD, 

and SpkF were found to autophosphorylate or 
phosphorylate their substrate proteins (Kamei et al., 
2001, 2002, 2003), whereas SpkE showed no protein 
kinase activity in vitro (Kamei et al., 2002). SpkA was 
reported to be essential for cellular motility via 
phosphorylation of membrane proteins (Kamei et al., 
2001), and was found to be involved in the formation 
of thick pili (Panichkin et al., 2006). SpkB was also 
shown to be vital to cellular motility (Kamei et al., 
2003). Although SpkC was neither expressive nor 
inactive under normal conditions, the Δ S  pkC  mutant 
strain was found to be sensitive to high-temperature 
stress (Zhang X W, personal communication). 
Furthermore, SpkC was reported to regulate nitrogen 
metabolism (Galkin et al., 2003). SpkD was reported 
to be essential for survival and, as such, cannot be 
removed completely (Kamei et al., 2002). SpkE may 
be involved in nitrogen metabolism and the post-
translational modifi cation of pilin (Galkin et al., 2003; 
Kim et al., 2004). SpkG can sense high-salt stress 
signals directly (Liang et al., 2011), and  spkG  was 
found to be highly down-regulated in iron defi ciency 
under peroxide stress (Singh et al., 2004). In addition, 
SpkC, SpkF, and SpkK work one after the other to 
fi nally phosphorylate the co-chaperonin GroES 
(Zorina et al., 2011). 

 In this study, we aimed to identify more details of 
the mechanisms of the perception and transduction of 
LT signals in  Synechocystis  by transcriptomic analysis 
of cold-stressed cells using newly developed cDNA 
microarrays. 

 2   MATERIAL AND METHOD 

 2.1 Cells and culture conditions 

 The motile strain of  Synechocystis  sp. PCC 6803 
was obtained from the Key Laboratory of Experimental 
Marine Biology, Institute of Oceanology, Chinese 
Academy of Sciences. Wild-type cells were grown 
photoautotrophically in BG-11 medium (Rippka et 
al., 1979) at 28°C and 30 μE/(m 2 ∙s) under white light 
from incandescent lamps. The cells were grown to the 
mid-logarithmic growth phase (optical density at 
730 nm of 0.3–0.6) before stress treatment, and then 
treated separately at 4°C, 10°C, 28°C (control) and 
35°C for 30 min, 1 h, and 2 h (Suzuki et al., 2001). 
After treatment, samples were collected and kept in 
liquid nitrogen. 

 2.2 Isolation of total RNA 

 Total RNA was isolated from 30 mL cultures of 
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wild-type and LT-inducible cells. The cells were 
collected by centrifugation (4 000   g  for 10 min), and 
the cell pellets were cooled in liquid nitrogen. The 
cooled cells were ground in liquid nitrogen, and 
resuspended in 1-mL Biozol reagent and chloroform 
(ratio 1:5). An equal volume of isopropyl alcohol was 
added to the aqueous phase after centrifuged at 
12 000   g  for 15 min at 4°C, and the solution was 
incubated for 30 min at -20°C. Precipitated RNA was 
collected by centrifugation at 12 000   g  for 10 min at 
4°C, washed with 70% ethanol, and resuspended in 
DEPC-H 2 O. The total RNA was treated with RNase-
free DNase I (Promega) at 37°C for 1 h to remove 
DNA. Total RNA from each sample was quantifi ed 
using a NanoDrop ND-1000 and RNA integrity was 
assessed by standard denaturing agarose gel 
electrophoresis. 

 2.3 Reverse transcription 

 Reverse transcription reactions were performed 
with the random hexamer primers using M-MLV 
Reverse Transcriptase (Promega). The reaction system 
consisted of 2 μL 5  PrimeScript™ buffer, 0.5 μL 
PrimeScript™ reverse transcriptase, 0.5 μL dNTP 
mixture, 0.5 μL six random primers, RNA template, 
and RNase free dH2O up to 10 μL. The resulting 
cDNAs were used as the templates for the microarray. 

 2.4 cDNA microarray analysis 

 The  Synechocystis  8×15K Gene Expression Array 
was manufactured by Agilent of Shanghai KangChen 
Bio-tech. Sample labeling and array hybridization 
were performed according to the Agilent One-Color 
Microarray-Based Gene Expression Analysis protocol 
(Agilent Technologies). Briefl y, 1 μg of total cRNA 
from each sample was linearly amplifi ed and labeled 
with Cy3-dCTP using an Agilent Quick Amp Labeling 
Kit.  

 The labeling reaction procedure was as follows: (i) 
1 μg total RNA, 1.2 μL T7 promoter primer, and 
nuclease-free water (to a total reaction volume to 
11.5 μL) were added to a 1.5-mL microcentrifuge 
tube, which was then incubated at 65°C in a circulating 
water bath for 10 min, and on ice for a further 5 min; 
(ii) 8.5 μL cDNA master mix (4 μL 5×fi rst strand 
buffer, 2 μL 0.1 mol/L DTT, 1 μL 10 mmol/L dNTP 
mix, 1 μL MMLV-RT, and 0.5 μL RNaseOut) was 
added to each sample tube and mixed by pipetting up 
and down, then the samples were incubated in a 
circulating water bath at 40°C for 2 h, at 65°C for 
15 min and on ice for a further 5 min; and (iii) 60 μL 

transcription master mix was added to each sample 
tube and mixed by pipetting, then the samples were 
incubated in a circulating water bath at 40°C for 2 h. 
The 60 μL transcription master mix consisted of 
20 μL 4×transcription buffer, 6 μL 0.1 mol/L DTT, 
8 μL NTP mix, 6.4 μL 50% PEG, 2.4 μL cyanine-3-
CTP, 0.5 μL RNaseOUT, 0.6 μL inorganic 
pyrophosphatase, 0.8 μL T7 RNA polymerase, and 
15.3 μL nuclease-free water. 

 The labeled cRNAs were purifi ed using an 
RNAeasy mini kit (Qiagen). The concentration and 
specifi c activity of the labeled cRNAs (pmol Cy3/μg 
cRNA) were measured using a NanoDrop ND-1000. 
Then, 1 μg of each labeled cRNA was fragmented by 
adding 11 μL 10×blocking agent and 2.2 μL 
25×fragmentation buffer, followed by heating at 60°C 
for 30 min. Finally 55 μL 2×GE hybridization buffer 
was added to dilute the labeled cRNA. For 
hybridization, 100 μL hybridization solution was 
added to the gasket slide, which was then assembled 
with the microarray slide. The slides were incubated 
for 17 h at 65°C in an Agilent hybridization oven. The 
hybridized arrays were washed, fi xed, and scanned 
using the Agilent DNA microarray scanner (Part 
Number G2505B). 

 2.5 Data analysis 

 Agilent feature extraction software (version 
10.7.3.1) was used to analyze the acquired array 
images. Quantile normalization and subsequent data 
processing were performed using the GeneSpring GX 
v11.5.1 software package (Agilent Technologies). 
After quantile normalization of the raw data, genes 
for which at least eight out of eight samples had fl ags 
in present or marginal (“All Targets Value”) were 
chosen for further data analysis. Differentially 
expressed genes were identifi ed by fold change 
fi ltering. Hierarchical clustering was performed using 
Agilent GeneSpring GX software (Version 11.5.1). 
Pathway analysis was performed using a standard 
enrichment computation method. 

 2.6 Real-time reverse-transcription PCR analysis 

 Real-time reverse-transcription PCR (qRT-PCR) 
was performed as follows. The primers were designed 
and checked using OMIGA2 software. The RNAse P 
( rnp ) gene was used as a reference (Table 1). The 
qRT-PCR was performed using a SYBR ®   Premix Ex 
Taq ™ II kit and the ABI 7500 fast real-time PCR 
system. The reaction system consisted of 0.4 μL 
forward primer (10 μmol/L), 0.4 μL reverse primer 
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(10 μmol/L), 0.4-μL ROX reference dye II, 6 μL 
cDNA template, 10 μL SYBR ®  Premix Ex Taq™II 
(2×), and 2.8 μL ddWater to a total volume of 20 μL. 
A two-step PCR reaction program was used. First the 
mixture was incubated at 50°C for 20 s and 95°C for 
15 min; and then at 95°C for 15 s and at 60°C for 60 s, 
for 40 cycles. 

 3 RESULT AND DISCUSSION 

 3.1 Cell growth 

  Synechocystis  cells were grown at various 
temperatures under a continuous light intensity of 
30 μE/(m 2 ∙s). After 30 min, 1 h, and 2 h, cells were 
harvested separately for use in the qRT-PCR 
experiments. 

 The cells grown at 4°C became feeble and died 
after 6 h (Fig.1a). The growth curve of the cells at 
10°C was signifi cantly different from the growth 
curve of the cells grown at the other temperatures 
(Fig.1a), and the expression levels of the genes in the 
cells grown at 10°C were different at the different 
times (Fig.1b). After 30 min at 10°C, the transcriptional 
expression of  SpkC , which has been linked to high-
temperature stress, was clearly down-regulated 
(Fig.1b).  SpkD  was clearly up-regulated in cells after 
30 min at 10°C (Fig.1b).  

 Furthermore, after 2 h, the cells grown at 10°C 
were greener than the cells grown under the other 
temperature conditions, perhaps because of the 
degradation of phycobilisomes. Therefore, we chose 
the cells grown at 10°C for 30 min for the 
transcriptomic analysis of  Synechocystis  using the 
cDNA microarrays. 

 3.2 Evaluation of the genome-wide expression of 
LT-stress genes 

 For the microarray analysis, the cDNA from both 
the LT-treated and untreated (control) cells were 
labeled with Cy3-dye (Fig.2a). To measure the quality 
control of the microarray data, a scatter-plot was used 
to visualize and assess variations in the gene 
expression levels (or reproducibility) between two 
repeat microarrays or groups (Fig.2b).  

 Among the 3 569 genes represented on the cDNA 
microarrays, 589 genes were differentially expressed 
by more than 1.5-fold between the LT-stressed cells 
and the normal controls; 353 genes were up-regulated 

 Table 1 Primers used for the qRT-PCR experiment 

 Genes  Primer sequences 

  spkC    ( slr0599 ) 
 CAGTTTGGGACTAACGGC 

 TAAACCTTGGTGGCTTGG 

  spkD    ( sll0776 )  
 CACTAGGGGATTTATGG 

 TTGGTGGAACTTCTCGT 

  spkE    ( slr1443 )  
 TTTCTCCCCAACATTTCA 

 TCAAACTTTCCAACATCC 

  hik34    ( slr1285 ) 
 CATTCGCACCCTAACCAAGT 

 AGCTTGGAACACCGCTTCTA 

  r  np    ( slr1469 )  
 GGACTACCCAAAACACTGC 

 CAATAATCCCAGCTTGGCT 
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 Fig.1 Growth curves and gene expression levels for  Synechocystis  cells under temperature stress 
 a. Growth curves under different temperature conditions. 28°C was taken as the normal condition. b. Expression levels of some selected genes under different 
temperature conditions. The 2 -ΔΔ  C  t  method was used to calculate the fold change in gene expression levels between cells under stress and under normal 
conditions.  
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and 246 genes were down-regulated. We analyzed the 
differentially expressed genes based on their 
biological functions. The up-regulated genes were 
related mainly to aminoacyl-tRNA biosynthesis, 
photosynthesis, and ribosome (Table 2). Among the 
down-regulated genes, most were related to signal 
transduction (Table 2). There were many hypothetical 
genes among both the up- and down-regulated genes 
(Table 2). 

 3.2.1 Up-regulated genes related to photosynthesis 

 The genes involved in photosynthesis tended to be 
up-regulated at the transcriptional level in the LT-
induced cells. Enzyme activity most often decreases 
at low temperatures; therefore, an increased quantity 
of photosynthetic enzymes may help the cells to 
survive under LT stress. In  Synechocystis , the 
photosynthetic system is composed mainly of 
photosystem I (PSI), photosystem II (PSII), 
photosynthetic electron transport (PET) and 
cytochrome b6/f complex (Cyt.b6). In the LT-stressed 
cells, the up-regulated genes related to PSI were  PsaC  
( ssl0563 ,   PSI subunit VII),  PsaE  ( ssr2831 , PSI 
reaction center subunit IV),  PsaK  ( ssr0390 , PSI 
reaction center subunit X) and  PsaM  ( smr0005 , PSI 
reaction center subunit XII). The  psbA2  ( slr1311 ) and 
 psbA3  ( sll1867 ) genes that encode the PSII D1 
subunits of PSII core complexes were up-regulated in 
cells stressed at 10°C. Other up-regulated genes 
related to PSII were  psbM  ( sml0003 ),  psbH  ( ssl2598 ), 
 psbI  ( sml0001 ) for PSII reaction center proteins,  psbT 
 ( smr0001 ),  psbX  ( sml0002 ),  psbY  ( sml0007 ), and 
 psb28-2  ( slr1739 ) for the PSII proteins, and  psbO  
( sll0427 ) for the PSII manganese-stabilizing 
polypeptide. Some up-regulated genes in 
 Synechocystis  under LT stress were related to Cyt.b6; 
namely,  petG  ( smr0010 , Cyt.b6 subunit),  petL 
 ( sll  1994a , Cyt.b6 subunit),  petN  ( sml0004 , Cyt.b6 
subunit) and two  petC  genes ( sll1316  and  sll1182 , 
Cyt.b6 iron-sulfur subunit). Up-regulated genes 
related to PET were  PetE ,  sll0199 ; plastocyanin (PC), 
 PetF ,  slr1828 ; ferredoxin (Fd), and  PetJ ,  sll1796 ; 
cytochrome C553 (cyt c6). The  AtpC  ( sml0004 , F0F1 
ATP synthase subunit epsilon) gene, which encodes 
an F-type ATPase, was also up-regulated in the LT-
treated cells. Manganese-depleted   PSII core 
complexes of  Synechocystis  illuminated at very LT 
(77 K; i.e. -196°C), displayed the reversible 
photooxidation of carotenoids (Vrettos et al., 1999). 
Therefore, under extreme LTs,  Synechocystis  strains 
may invoke a photosynthesis mechanism that can 
supply chemical energy for cell's activities, or it is 
very probable that nothing was activated at 10°C, 
except  rbps  and a few other genes, and the observed 
increase in mRNA expression might be because of its 
stabilization. 

 3.2.2 Genes related to signal transduction 

 Organisms can acclimate to natural habitats 
because of their ability to sense changes in the ambient 
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 Fig.2 Evaluation of the microarray analysis of gene 
expression levels in  Synechocystis  cells under LT 
stress 
 a. Overlay images of the microarray hybridized with labeled 
cDNAs from cells grown at normal temperature (28°C, control) 
and cells treated at 10°C for 30 min. The up-regulated genes are 
shown in green and the down-regulated genes are in blank color; b. 
Scatter-plot of variations in the gene expression levels between two 
matched microarray experiments. The numbers on the  X  and  Y  axes 
are the normalized signal values of the samples (log2 scaled). The 
values that fall above the top green line and below the bottom green 
line indicate a more than 1.5 fold change in transcription levels 
(increase in upper part and decrease in lower part) between the two 
compared samples. 
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environment and to express a large number of genes 
in response. Thus, organisms can synthesize specifi c 
proteins and metabolites for protection against LT 
(Kaye and Guy, 1995; Murata and Los, 1997, 2006; 
Thieringer et al., 1998; Vigh et al., 1998) (Fig.3). 
Hik33 was shown to be an important participant in 
LT-signal transduction in  Synechocystis , depending 
on the membrane rigidity (Suzuki et al., 2000). LT 
signals were found to be transferred directly from 

Hik33 to Rre26 to regulate the expression of 21 genes, 
including  ndhD2 ,  hliA ,  hliB ,  hliC ,  feoB ,  crp , and 
genes for proteins of unknown function (Suzuki et al., 
2000; Murata and Los, 2006). Moreover, two other 
LT sensors that are homologues of DesK and DesR in 
 B .    subtilis  were reported; one depended on membrane 
rigidness, and the other functioned independently in 
the saturation of membrane lipids (Inaba et al., 2003; 
Los and Murata, 2004; Mansilla and de Mendoza, 

 Table 2 Differentially expressed genes between treated (10°C) and untreated (control)  Synechocystis  cells 

 Category 
 Up-regulated genes 

 Category 
 Down-regulated genes 

 Number of genes  Proportion (%)  Number of genes  Proportion (%) 

 Photosynthesis  23  5.62  Signal transduction  14  5.69 

 Aminoacyl-tRNA biosynthesis  36  8.80  Carotenoid biosynthesis  3  1.22 

 Ribosome  18  4.40  Butanoate metabolism  3  1.22 

 Repair  7  1.71  Pantothenate and CoA biosynthesis  3  1.22 

 Carbon fi xation in 
photosynthetic organisms  7  1.71  Valine, leucine and 

isoleucine biosynthesis  3  1.22 

 Signal transduction  4  0.98  Pyruvate metabolism  4  1.63 

 Fatty acid  2  0.49  Fatty acid  3  1.22 

 Others  103  25.19  Others  72  29.27 

 Hypothetical proteins  209  51.10  Hypothetical proteins  142  57.72 
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 Fig.3 General scheme of the proposed network for the response of  Synechocystis  cells to LT stress 
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2005). In addition, the  hik13  ( sll1003 ) (Kaneko et al., 
1995; Kaneko and Mizuno, 1996), and  hik15  ( sll1353 ) 
genes might be essential for growth under LT (Suzuki 
et al., 2000). Mikami et al. (2003) reported that DNA 
microarray data (unpublished results) indicated that 
Hik2 might be a second LT sensor, while 15 other LT-
inducible genes were not regulated by Hik33, 
implying that there were some other, yet to be 
identifi ed, sensors and Rres involved in signal 
transduction under LT conditions. 

 Our cDNA microarrays results suggested that  desB  
was up-regulated in the LT-stressed cells. However, 
 Hik33  ( sll0698 ) expression was down-regulated, 
which may be abnormal. The expression levels of 
 Hik2  ( slr1147 ),  Hik5  ( sll1888 ),  Hik16  ( slr1805 ), 
 Hik  24  ( slr1969 ),  Hik35  ( sll0473 ),  Hik37  ( sll0094 ), 
 Hik  42  ( sll1555 ), and  Hik  p  ( slr6041 ) were all down-
regulated in the LT-stressed cells. Some response 
regulators, such as  Rre29  ( slr0081 ),  Rre35  ( sll0039 ) 
and  Rre38  ( slr1584 ), were also down-regulated in the 
LT-stressed cells (Table 4). In addition,  SpkE  
( slr1443 ), which shows no protein kinase activity, 
was up-regulated, while the transcriptions of  spkA  
( sll1575 ), essential for cellular motility, and of  spkD  
were down-regulated. A response regulator related to 
cell division,  Rre42  ( slr2041 ) (Galperin et al., 2001) 
was up-regulated in the LT-stressed cells. Some of the 
up-regulated genes had unknown functions in signal 
transduction systems; for example,  rre10  ( slr1037 , 
CheY family protein) and  rre16  ( slr1837 , OmpR 
subfamily). In addition, the transcription of three 
genes that encode the high-light inducible proteins 
Ssl1633 (HliC), Ssr2595 (HliB), and Ssl2542 (HliA) 
were also up-regulated in the LT-stressed cells. We 
propose that extreme LT conditions may trigger the 
evolution of strains that need more light. Further 
studies are needed into the mechanisms involved in 
LT-signal transduction. 

 3.2.3 Up-regulated genes related to fatty acids 

 Cold inducibility of gene expression in 
 Synechocystis  was reported to be enhanced by the 
rigidifi cation of membrane lipids and the proportion 
of unsaturated fatty acids among the membrane 
phospholipids (Inaba et al., 2003). Moreover, for 
many years, it has been believed that the increased 
rigidity of membranes after a downward shift in 
temperature may be the primary signal of a decrease 
in ambient temperature (Murata and Los, 1997; Los 
and Murata, 2000). In  Synechocystis , there are four 
genes that encode fatty acid desaturases, namely, 

genes  desA  ( slr1350 ),  des  B  ( sll1441 ),  des  C  ( sll0541 ) 
and  desD    ( sll0262 ) for the Δ12, Δ15, Δ9 and Δ6 fatty 
acid desaturases, respectively (Wada et al., 1990; 
Sakamoto et al., 1994; Sakamoto and Murata, 2002). 
The  desB  gene for ω3 fatty acid desaturase (Sakamoto 
et al., 1994) introduces double bonds into fatty-acyl 
chains at the omega 3 position forming trienoic fatty 
acids (Murata and Wada, 1995). The  desA  was found 
to be induced by the rigidifi cation of plasma membrane 
as a result of the Pd-catalyzed hydrogenation of 
membrane lipids (Vigh et al., 1993). The  desA  gene 
was found to be crucial for the maintenance of the 
membrane fl uidity, while the  desB  had much less 
effect on the fl uidity. Furthermore, while  desA  and 
 desD  encode proteins that synthesize polyunsaturated 
fatty acids and modulate the fatty acid composition of 
the membrane lipids under cold stress, mutants that 
lack either of the two genes were still able to adjust 
the membrane fl uidity (Mironov et al., 2012). In other 
words, other mechanisms, apart from changes in the 
fatty acid composition of membrane lipids, seem to 
be used to regulate membrane fl uidity. 

 However, in the cDNA microarrays, only two 
genes,  desB  and  slr1609  (long-chain-fatty-acid CoA 
ligase), appeared to be signifi cantly up-regulated in 
the cells grown at 10°C. Thus,  slr1609  may be crucial 
for fatty acid activation and the biosynthesis of 
alkanes (Gao et al., 2012), while  desB  may play an 
essential role in changes in fatty acid composition of 
membrane lipids, which may be crucial for the 
terrifi cally cold resistance of  Synechocystis . 

 3.2.4 Up-regulated genes related to ribosome and 
aminoacyl-tRNA biosynthesis  

 Ribosomal RNAs in  Synechocystis  have 5S rRNA, 
16S rRNA and 23S rRNA. All the genes that encode 
these rRNAs were up-regulated or stabilized in the 
cells under LT stress. Furthermore, the transcription 
of some genes for the large subunits (L2,  RplB , 
Sll1802; L4, RplD, Sll1800; L7/L12, RplL, Sll1746; 
L10, RplJ, Sll1745; L17, RplQ, Sll1819; L19, RplS, 
Sll1740; L20, RplT, Sll0767; L23, RplW, Sll1801; 
L27, RpmA, Ssr2799; L28, RpmB, Ssr1604; and L34, 
RpmH, Ssr0011), for the 50S ribosomes and small 
subunits (S2, RpsB, Sll1260; S10, RpsJ, Sll1101; 
S14, RpsN, Slr0628; and S19, RpsS, Ssl3432), and 
for the 30S ribosomes was also up-regulated in the 
cells under LT stress (Table 3). Two other genes were 
up-regulated in the cells under LT stress,  rpoC1  
( slr1265 ) for the subunit of the RNA polymerase and 
 g  yrB  ( s  ll2005 ) for the protein responsible for negative 
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 Table 3 Up-regulated genes of  Synechocystis  related to various biological functions in cells under LT stress compared with 
cells under normal conditions 

 Protein_id  Gene  Locus_tag  Product  Fold change 

 Photosynthesis 

 NP_441966.1   psaC    ssl0563   Photosystem I subunit VII  1.8407861 

 NP_441703.1   psaE    ssr2831   Photosystem I reaction center subunit IV  2.3936045 

 NP_440039.1   psaK    ssr0390   Photosystem I reaction center subunit X  1.8613524 

 NP_440325.1   psaM    smr0005   Photosystem I reaction center subunit XII  2.4283636 

 NP_439906.1   psbA2    slr1311   Photosystem II D1 protein  1.9500653 

 NP_441550.1   psbA3    sll1867   Photosystem II D1 protein  1.963303 

 NP_440949.1   psbH    ssl2598   Photosystem II reaction center protein H  2.822149 

 NP_442015.1   psbI    sml0001   Photosystem II reaction center I protein I  2.2614248 

 NP_440028.1   psbM    sml0003   Photosystem II reaction center protein M  3.630347 

 NP_441796.1   psbO    sll0427   Photosystem II manganese-stabilizing polypeptide   1.5307822 

 NP_442063.1   psbT    smr0001   Photosystem II reaction center protein T  2.4433758 

 NP_442241.1   psbX    sml0002   Photosystem II protein PsbX  2.0402317 

 NP_441042.1   psbY    sml0007   Photosystem II protein PsbY  2.382206 

 NP_441099.1   Psb28-2    slr1739   Photosystem II protein  1.515849 

 NP_440948.1   petC    sll1316   Cytochrome B6-f complex iron-sulfur subunit  1.6417295 

 NP_441583.1   petC    sll1182   Cytochrome B6/f complex iron-sulfur subunit  1.5772114 

 NP_442157.1   petE    sll0199   Plastocyanin  1.5058625 

 NP_440748.1   petF    slr1828   Ferredoxin  2.1043668 

 NP_441556.1   petG    smr0010   Cytochrome B6-f complex subunit PetG  2.4847147 

 NP_440674.1   petJ    sll1796   Cytochrome C553  5.530795 

 NP_001035872.1   petL    sll  1994a   Cytochrome B6f complex subunit PetL  1.8637409 

 NP_440044.1   ycf6    sml0004   Cytochrome B6-f complex subunit PetN  1.8057883 

 NP_441408.2   atpC    slr1330   F0F1 ATP synthase subunit epsilon  1.7710309 

 Aminoacyl-tRNA  

      6803t32   tRNA-Ala  2.7152689 

      6803t06   tRNA-Arg  2.9374962 

      6803t33   tRNA-Arg  4.172092 

      6803t08   tRNA-Arg  5.742981 

      6803t24   tRNA-Asn  4.3037295 

      6803t13   tRNA-Asp  1.8763491 

      6803t35   tRNA-Cys  2.9889767 

      6803t23   tRNA-Gln  4.657067 

      6803t14   tRNA-Glu  7.6358933 

      6803t17   tRNA-Gly  3.3794053 

      6803t36   tRNA-Gly  2.5291226 

      6803t30   tRNA-Gly  3.693971 

      6803t22   tRNA-His  3.382573 

      6803t29   tRNA-Ile  4.417949 

      6803t41   tRNA-Leu  3.7745998 

      6803t07   tRNA-Leu  3.6744406 

To be continued
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 Table 3 Continued 

 Protein_id  Gene  Locus_tag  Product  Fold change 

      6803t12   tRNA-Leu  14.837352 

      6803t10   tRNA-Leu  9.476376 

      6803t39   tRNA-Leu  4.8880386 

      6803t27   tRNA-Lys  4.9500713 

      6803t18   tRNA-Met  3.5158145 

      6803t11   tRNA-Met  2.3305147 

      6803t15   tRNA-Pro  5.089357 

      6803t01   tRNA-Pro  5.4028554 

      6803t04   tRNA-Pro  2.1356065 

      6803t02   tRNA-Ser  9.784478 

      6803t21   tRNA-Ser  6.974377 

      6803t20   tRNA-Ser  4.302078 

      6803t31   tRNA-Ser  10.416905 

      6803t03   tRNA-Thr  2.3783782 

      6803t38   tRNA-Thr  3.36025 

      6803t25   tRNA-Thr  4.631181 

      6803t09   tRNA-Trp  3.6057217 

      6803t37   tRNA-Tyr  3.7333024 

      6803t42   tRNA-Val  3.630308 

      6803t05   tRNA-Val  2.7371922 

 Ribosome 

 NP_440666.1   rplB    sll1802   50S ribosomal protein L2  1.876755 

 NP_440668.1   rplD    sll1800   50S ribosomal protein L4  1.8015074 

 NP_440737.1   rplJ    sll1745   50S ribosomal protein L10  1.7290424 

 NP_440736.1   rplL    sll1746   50S ribosomal protein L7/L12  2.4353411 

 NP_440644.1   rplQ    sll1819   50S ribosomal protein L17  1.7167804 

 NP_440742.1   rplS    sll1740   50S ribosomal protein L19  1.7200234 

 NP_442051.1   rplT    sll0767   50S ribosomal protein L20  1.6531644 

 NP_440667.1   rplW    sll1801   50S ribosomal protein L23  1.7551737 

 NP_441681.1   rpmA    ssr2799   50S ribosomal protein L27  2.0218675 

 NP_440186.1   rpmB    ssr1604   50S ribosomal protein L28  2.414365 

 NP_441561.1   rpmH    smr0011   50S ribosomal protein L34  1.6212666 

 NP_441467.1   rpsB    sll1260   30S ribosomal protein S2  1.6079607 

 NP_441640.1   rpsJ    sll1101   30S ribosomal protein S10  1.587542 

 NP_442274.1   rpsN    slr0628   30S ribosomal protein S14  1.5602026 

 NP_440665.1   rpsS    ssl3432   30S ribosomal protein S19  1.5036769 

    rrn16Sa    6803r03   16S ribosomal RNA  1.7202241 

    rrn23Sa    6803r02   23S ribosomal RNA  1.7961024 

    rrn5Sa    6803r01   5S ribosomal RNA  1.8599547 

 NP_441040.1   gyrB    sll2005   DNA gyrase B subunit  1.523912 

 NP_441586.1   rpoC1    slr1265   DNA-directed RNA polymerase subunit gamma  1.7419988 

To be continued
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DNA supercoiling. Only the tRNA-Phe ( 6803t16 ) 
had no signifi cance; all the others were up-regulated 
in  Synechocystis  under LT stress (Table 3). The above 
data show that extremely LT signals may have an 
important effect on  Synechocystis  cells at the 
translation level, especially on the 36 genes that are 
involved in aminoacyl-tRNA biosynthesis, which 
may be related to rapid and effi cient signal 
transductions. 

 3.2.5 Other up-regulated genes 

 A number of other up-regulated genes related to 
some biological pathways between cells grown under 
LT stress and cells grown under normal conditions. 
Some of these genes were found to be related to DNA 
repair systems; for example,  radC  ( sll0766 ),  recN  
( sll1520 ),  recO  ( slr0181 ),  topA  ( slr2058 ), and  sll1712 , 

all of which were up-regulated or stabilized at the 
mRNA level (Table 3). In addition, genes that encode 
Pds (Slr1254, phytoene desaturase), Bhy (Sll1468, 
β-carotene hydroxylase), and isorenieratene synthase 
(Sll0254) related to carotenoid biosynthesis were 
down-regulated in treated cells compared with 
untreated cells. All the cellular processes were 
probably arrested at 10°C, which is an extremely LT 
for  Synechocystis  (Table 4). 

 3.3 qRT- PCR validation 

 We validated the expression of the spkC,  spkE  and  
spkE  genes obtained by our microarray analysis by 
qRT-PCR (Fig.4). Because the Δ S  pkC  mutant strain 
was found to be sensitive to high-temperature stress 
(Zhang X W, personal communication), we speculated 
that the  spkC  gene will be down-regulated in cells 

 Table 3 Continue d

 Protein_id  Gene  Locus_tag  Product  Fold change 

 Signal transduction  

 NP_440496.1   rre10    slr1037   CheY family protein  1.7065983 

 NP_440764.1   rre16    slr1837   OmpR subfamily  1.9730282 

 NP_440423.1   divK    slr2041   Cell division response regulator; DivK  1.5388181 

 NP_440875.1   spkE    slr1443   Protein kinase  1.5049236 

 Carbon fi xation 

 NP_442114.1   cbbA    sll0018   Fructose-1,6-bisphosphate aldolase  2.6146588 

 NP_441308.1   glpX    slr2094   Fructose 1,6-bisphosphatase II  1.7083902 

 NP_442343.1   rpiA    slr0194   Ribose-5-phosphate isomerase A  ≤1.5 

 NP_441738.1   fbp    slr0952   Fructose-1,6-bisphosphatase  ≤1.5 

 NP_442114.1   cbbA    sll0018   Fructose-1,6-bisphosphate aldolase  2.6146588 

 NP_441843.2   pgk    slr0394   Phosphoglycerate kinase  1.7886404 

 NP_442120.1   rbcL    slr0009   Ribulose bisophosphate carboxylase  ≤1.5 

 High-light inducible proteins 

    hliC    ssl1633   High light inducible protein   

    hliB    ssr2595   High light inducible protein   

    hliA    ssl2542   High light-inducible protein   

 Repair 

 NP_440778.1     sll1712   DNA binding protein HU  2.464211 

 NP_442053.1   radC    sll0766   DNA repair protein RadC  1.9226356 

 NP_441790.1   recN    sll1520   DNA repair protein RecN  1.7318777 

 NP_442000.2   recO    slr0181   DNA repair protein RecO  1.7317327 

 NP_441184.1   topA    slr2058   DNA topoisomerase I  1.502423 

 Fatty acid metabolism 

 NP_441622.1   desB    sll1441   Delta 15 desaturase  2.4022195 

 NP_440344.1     slr1609   Long-chain-fatty-acid CoA ligase  2.1193707 
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grown at 10°C. The qRT-PCR results show that the 
expression of  spkE  was up-regulated and   the 
expression of  spkE  was down-regulated in the LT-
stressed cells, which is in line with the microarray 
data (Fig.4). However, while the qRT-PCR results 
showed that the  spkC  was down-regulated at 10°C, 
 spkC  was not detected in the cDNA microarray data 
in this study. Therefore, further studies are needed to 
test our speculation. 

 4 CONCLUSION 
 We used cDNA microarray technology to analyze 

gene expression in  Synechocystis  under LT stress. A 
large number of differentially expressed genes were 
found. An important fi nding is that the genes that 
were up-regulated at the transcriptional level in cells 
under LT stress compared with cells under normal 
conditions included most of the genes that encode 
components of the photosynthetic system. The 
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 Fig.4 Expression of  spkC ,  spkD , and  spk  E  in LT-stressed and 
normal  Synechocystis  cells measured by qRT-PCR 
 The 2 -ΔΔ  C  t  method was used to calculate the fold change in gene 
expression levels between cells under stress and under normal 
conditions. 28°C for 30min was taken as the normal condition. 

 Table 4 Down-regulated genes of  Synechocystis  related to various biological functions in cells under LT stress compared 
with cells under normal conditions 

 Protein_id  Gene  Locus_tag  Product  Fold change 

 Signal transduction 

 NP_440624.1   hik2    slr1147   Sensory transduction histidine kinase  -1.5425982 

 NP_441521.1   hik5    sll1888   Sensory transduction histidine kinase  -1.8129581 

 NP_440365.1   hik13    sll1003   Sensory transduction histidine kinase  -1.5486623 

 NP_441053.1   hik16    slr1805   Sensory transduction histidine kinase  -2.0885978 

 NP_441517.1   hik24    slr1969   Hybrid sensory kinase  -1.6010792 

 NP_440007.1   hik33    sll0698   Drug sensory protein A  -1.5136964 

 NP_442577.1   hik37    sll0094   Sensory transduction histidine kinase  -1.5801467 

 NP_441702.1   hik42    sll1555   Hybrid sensory kinase  -1.5844272 

 NP_942484.1   hikm    slr6041   Two-component sensor histidine kinase  -1.7874668 

 NP_440555.1   spkA    sll1575   Serine/threonine protein kinase  -1.7022479 

 NP_442655.1   spkD    sll0776   Serine/threonine protein kinase  -1.8333734 

 NP_442484.1   rre29    slr0081   OmpR subfamily  -1.5930618 

 NP_442718.1   rre35    sll0039   CheY family protein  -1.8846409 

 NP_442923.1   rre38    slr1584   OmpR subfamily  -1.7764021 

 Carotenoid biosynthesis 

 NP_440788.1   bhy/crtZ    sll1468   β-carotene hydroxylase  -1.5127941 

 NP_441254.1   crtU    sll0254   Isorenieratene synthase  -2.3443117 

 NP_441167.1   pds/crtP    slr1254   Phytoene desaturase  -1.6156873 

 Pyruvate metabolism 

 NP_441027.1   pta    slr2132   Phosphate acetyltransferase  -1.7396748 

 NP_441683.1  leuA  sll1564  Alpha-isopropylmalate/homocitrate synthase family transferase   -1.7055957 

 NP_442022.1   accD    sll0336   Acetyl-CoA carboxylase subunit beta  -1.599048 

 NP_442597.1   ppsA    slr0301   Phosphoenolpyruvate synthase  -1.5075309 

To be continued
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 Table 4 Continue d

 Protein_id  Gene  Locus_tag  Product  Fold change 

 Butanoate metabolism 

 NP_441304.1   ilvB    sll1981   Acetolactate synthase  -1.5532244 

 NP_440839.1   sdhA    slr1233   Succinate dehydrogenase fl avoprotein subunit  -1.5117372 

 NP_440750.1   phbC    slr1830   Poly(3-hydroxyalkanoate) synthase  -1.563616 

 Valine, leucine and isoleucine biosynthesis 

 NP_441304.1   ilvB    sll1981   Acetolactate synthase  -1.5532244 

 NP_442721.1   ilvE    slr0032   Branched-chain amino acid aminotransferase  -1.6124098 

 NP_441683.1   leuA    sll1564   Alpha-isopropylmalate/homocitrate synthase family transferase   -1.7055957 

 Transposase 

 NP_443008.1     slr0462   Transposase  -1.6912371 

 NP_942290.1     sll7002   Transposase  -1.6664679 

 NP_441693.1     slr1683   Transposase  -1.5729775 

 NP_441354.1     slr1522   Transposase  -1.9166062 

 NP_441299.1     sll1985   Transposase  -1.822878 

 NP_441118.1     slr0857   Transposase  -1.6183379 

 NP_441694.1     slr1684   Transposase  -1.7607863 

 NP_942436.1     sll8042   Transposase  -1.6369566 

 NP_442584.1     ssl0172   Transposase  -1.7723324 

 NP_442560.1     slr0099   Transposase  -1.5619414 

 NP_440891.1     slr1357   Transposase  -1.5267483 

 NP_442094.1     slr0352   Transposase  -1.5239737 

 NP_441355.1     slr1523   Transposase  -1.906241 

 NP_442679.1     sll0668   Transposase  -1.9163983 

 NP_439940.1     sll1397   Transposase  -1.599705 

 NP_440005.1     sll0700   Transposase  -1.525472 

 NP_443007.1     ssr0817   Transposase  -1.6080397 

 NP_441419.1     ssr2227   Transposase  -1.9786897 

 NP_442585.1     sll0092   Transposase  -1.6198834 

 Others 

 NP_442891.1   rpoF    slr1564   RNA polymerase sigma factor SigF  -1.9298439 

 NP_440117.1   bvdR    slr1784   Biliverdin reductase  -1.6996859 

 NP_441350.1   menA    slr1518   1,4-dihydroxy-2-naphthoate octaprenyltransferase   -1.526862 

 NP_443064.1     slr0609   47 kD protein  -1.512096 

 NP_440614.1     sll1081   ABC transporter membrane protein  -2.0568955 

 NP_440937.1     slr0889   ABC1-like  -2.1852384 

 NP_442136.1     sll0005   ABC1-like  -1.5963937 

 NP_440638.2   purA    sll1823   Adenylosuccinate synthetase  -1.6858243 

 NP_440618.1   speB    sll1077   Agmatine ureohydrolase  -1.5067617 

 NP_441451.2   lnt    slr0819   Apolipoprotein N-acyltransferase  -1.6708694 

 NP_442954.1     sll0720   ApxIC gene product hemolysin activation protein  -1.5292122 

 NP_442762.1   argS    sll0502   Arginyl-tRNA synthetase  -1.6080518 

To be continued
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 Table 4 Continue d

 Protein_id  Gene  Locus_tag  Product  Fold change 

 NP_442399.1   panD    sll0892   Aspartate alpha-decarboxylase  -1.8848246 

 NP_442135.1   aspC    sll0006   Aspartate aminotransferase  -2.0371778 

 NP_440558.1   aspA    slr1705   Aspartoacylase  -2.0660949 

 NP_441629.1   gatB    sll1435   Aspartyl/glutamyl-tRNA amidotransferase subunit B   -1.6340806 

 NP_443038.1   rfbB    sll0575   ATP-binding protein  -1.6006606 

 NP_443041.1   arcC    sll0573   Carbamate kinase  -1.8178267 

 NP_442183.1   ccmK    slr0436   Carbon dioxide concentrating mechanism protein CcmK   -1.5782174 

 NP_442507.1   cobW    slr0502   CobW protein  -1.6048905 

 NP_442547.1   cbiP    slr0618   Cobyric acid synthase  -1.5467187 

 NP_441538.1   hemN    sll1876   Coproporphyrinogen III oxidase  -4.0097356 

 NP_442426.1   cyp    slr0574   Cytochrome P450  -1.6143006 

 NP_441861.1   pyrC    slr0406   Dihydroorotase  -2.0390232 

 NP_442419.1     sll0544   DNA polymerase III subunit delta  -1.7347811 

 NP_440291.1     sll0644   Esterase  -1.5326122 

 NP_441180.1   suhB    sll1959   Extragenic suppressor  -1.6110706 

 NP_441567.1   suhB    sll1383   Extragenic suppressor SuhB  -1.7025776 

 NP_440484.1     sll0990   Formaldehyde dehydrogenase (glutathione)  -1.5098546 

 NP_442130.1   fumC    slr0018   Fumarate hydratase  -1.7996609 

 NP_440244.1   yefA    slr1072   GDP-D-mannose dehydratase  -1.814762 

 NP_440268.1   obgE    slr1090   GTPase ObgE  -1.6336955 

 NP_440544.1   gumB    sll1581   GumB protein  -1.5111989 

 NP_441539.1   ho2    sll1875   Heme oxygenase  -3.6761715 

 NP_440269.1   hliA    ssr1789   High light inducible protein  -1.529347 

 NP_441181.1   hisC    sll1958   Histidinol phosphate aminotransferase  -1.5352646 

 NP_441417.1   hoxF    sll1221   Hydrogenase subunit  -1.5090066 

 NP_441577.1   melB    sll1374   Melibiose carrier protein  -1.9115357 

 NP_441449.1   entC    slr0817   Menaquinone-specifi c isochorismate synthase  -1.746671 

 NP_440941.1   amiA    slr0891   N-acetylmuramoyl-L-alanine amidase  -1.5475873 

 NP_440808.1   narB    sll1454   Nitrate reductase  -1.7130357 

 NP_440613.1   nrtD    sll1082   Nitrate transport protein NrtD  -2.2711887 

 NP_440516.1   pobA    sll1297   Phenoxybenzoate dioxygenase  -1.7330594 

 NP_442529.1   purL    slr0520   Phosphoribosyl formylglycinamidine synthase  -1.6109879 

 NP_440548.1   cpcD    ssl3093   Phycocyanin associated linker protein  -1.7311424 

 NP_440294.1   pleD    slr0687   PleD gene product  -2.378852 

 NP_440724.1   pmgA    sll1968   PmgA  -1.9903225 

 NP_441363.1   kpsT    slr2108   Polysialic acid transport ATP-binding protein KpsT   -2.1367464 

 NP_442636.1   ziaA    slr0798   P-type ATPase  -1.5178888 

 NP_439987.1   llaI . 2    sll0709   Restriction enzyme LlaI protein  -1.81438 

 NP_442087.1   rnd    sll0320   Ribonuclease D  -1.5848689 

 NP_442349.1   rpoD    sll0184   RNA polymerase sigma factor SigC  -1.6865757 

 NP_441666.1     sll1087   Sodium-coupled permease  -1.8265866 

To be continued
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transcription of almost the genes that encode the 
components of PSI, PSII, PET, and Cyt.b6 was 
increased. It is possible that these up-regulated 
mRNAs are translated in the cells grown at 10°C to 
produce the proteins that support photosynthetic 
activity. We also found that  desB  may play a crucial 
role in the resistance of  Synechocystis  to an extremely 
LT (10°C). In addition, the results showed that  slr1609  
may be crucial for fatty acid activation and for the 
biosynthesis of alkanes at 10°C. However, we found 
that at LT (10°C) cellular motility may be reduced by 
decreasing the transcription of  SpkA . The abundance 
of mRNAs that encode the components of signal 
perception-transduction pathways may not be 
important when the proteins operate at the post-
translational level, for example in protein 
phosphorylation. Further investigation of gene 
expression profi les under various temperature 
conditions with time-coursed profi ling are needed to 
clarify all of the biological processes involved in the 
response of  Synechocystis  LT stress. 
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