27 research outputs found

    Seismic responses analysis of multi-story suspended floors system

    Get PDF
    One of the forefront of structural engineering is to realize the good resistance of building structure to earthquake loads. The performance philosophy of design structure has recently changed from preventing collapse to controlling the damage of structures under earthquake loading, which requires the development of new structural systems with great potential. An innovative multi-story suspended floors system model is proposed and its seismic responses are analytically studied in this paper to investigate the seismic performance of the system under strong earthquake loading. The system comprises a reinforced concrete frame with floors suspended from the columns using hangar rods. The characteristic of this suspended structure is that the lifting points of suspended floors are set on the columns. The equations of motion for this system are derived through the Lagrange equation and the structural responses are calculated in time-domain by the Newmark-beta method. A comparison between seismic responses of the innovative system and conventional frame system shows that the multi-story suspended floors system has excellent seismic performances. By establishing the relationship between the period ratio and seismic response of the system, the optimal period ratio is found to improve the seismic performance of the whole system. Finally, structural parameters such as the hangar rod length, damping ratio, and stiffness provided by the cushioning devices, the mass of suspended floors are optimized, considering seismic responses of rooftop and suspended floors as optimization objectives. It is shown that suitable parameters can be found to improve seismic performance and vibration control of the whole system

    Effect of Cu-Ce/ Îł

    No full text

    Accurate Characterization of the Properties of the Rare-Earth-Doped Crystal for Laser Cooling

    No full text
    We present a method for calibrating a commercial thermal camera adopted to accurately measure the temperature change of the sample in a laser-induced temperature modulation spectrum (LITMoS) test, which is adopted for measuring two crucial parameters of the external quantum efficiency ηext and the background absorption coefficient αb for assessing the laser cooling grade of the rare-earth-doped materials. After calibration, the temperature resolution of the calibrated thermal camera is better than 0.1 K. For the cooling grade Czochralski-grown 5% Yb3+:LuLiF4 crystal, the corresponding values of ηext and αb are LITMoS = measured to be ηext=99.4 (±0.1)% and αb=1.5 (±0.1)×10−4 cm−1, respectively

    Accurate Characterization of the Properties of the Rare-Earth-Doped Crystal for Laser Cooling

    No full text
    We present a method for calibrating a commercial thermal camera adopted to accurately measure the temperature change of the sample in a laser-induced temperature modulation spectrum (LITMoS) test, which is adopted for measuring two crucial parameters of the external quantum efficiency ηext and the background absorption coefficient αb for assessing the laser cooling grade of the rare-earth-doped materials. After calibration, the temperature resolution of the calibrated thermal camera is better than 0.1 K. For the cooling grade Czochralski-grown 5% Yb3+:LuLiF4 crystal, the corresponding values of ηext and αb are LITMoS = measured to be ηext=99.4 (±0.1)% and αb=1.5 (±0.1)×10−4 cm−1, respectively

    Comparative Assessment of Computational Methods for Free Energy Calculations of Ionic Hydration

    No full text
    Experimental observations for ionic hydration free energies are highly debated mainly due to the ambiguous absolute hydration free energy of proton, Δ<i>G</i><sub>hyd</sub><sup>*</sup>(H<sup>+</sup>). Hydration free energies (HFEs) of the 112 singly charged ions in the Minnesota solvation database were predicted by six methods with explicit and implicit solvent models, namely, thermodynamic integration (TI), energy representation module (ERmod), three-dimensional reference interaction site model (3D-RISM), and continuum solvation models based on the quantum mechanical charge density (SMD) and on the Poisson–Boltzmann (PB) and generalized Born (GB) theories. Taking the solvent Galvani potential of water into account, the resulting real HFEs from TI calculations for the generalized Amber force field (GAFF) modeled ions best match the experiments based on Δ<i>G</i><sub>hyd</sub><sup>*</sup>(H<sup>+</sup>) = −262.4 kcal/mol (Randles Trans. Faraday Soc. 1956, 52, 1573–1581), in agreement with our previous work on charged amino acids (Zhang et al. J. Phys. Chem. Lett. 2017, 8, 2705–2712). The examined computational methods show an accuracy of ∌7 kcal/mol for the GAFF-modeled ions, except for SMD with a higher accuracy of ∌4 kcal/mol. A biased deficiency in modeling anionic compounds by GAFF is observed with a larger standard deviation (SD) of 9 kcal/mol than that for cations (SD ∌ 4 kcal/mol). The relatively cheap ERmod and 3D-RISM methods reproduce TI results with good accuracy, although ERmod yields a systematic underestimation for cations by 9 kcal/mol; PB and GB generate relative (but not absolute) HFEs comparable to the TI predictions. Computational accuracy is found to be more limited by the accuracy of force fields rather than the models themselves

    Inhibition of c-Jun in AgRP neurons increases stress-induced anxiety and colitis susceptibility

    No full text
    Chronic restraint stress induces anxiety-like behaviors and colitis susceptibility, which is mediated by c-Jun in AgRP neurons

    Bionic microchannels for step lifting transpiration

    No full text
    Those various cross-sectional vessels in trees transfer water to as high as 100 meters, but the traditional fabrication methods limit the manufacturing of those vessels, resulting in the non-availability of those bionic microchannels. Herein, we fabricate those bionic microchannels with various cross-sections by employing projection micro-stereolithography (P ” SL) based 3D printing technique. The circumradius of bionic microchannels (pentagonal, square, triangle, and five-pointed star) can be as small as 100 ÎŒ m with precisely fabricated sharp corners. What’s more, those bionic microchannels demonstrate marvelous microfluidic performance with strong precursor effects enabled by their sharp corners. Most significantly, those special properties of our bionic microchannels enable them outstanding step lifting performance to transport water to tens of millimeters, though the water can only be transported to at most 20 mm for a single bionic microchannel. The mimicked transpiration based on the step lifting of water from bionic microchannels is also achieved. Those precisely fabricated, low-cost, various cross-sectional bionic microchannels promise applications as microfluidic chips, long-distance unpowered water transportation, step lifting, mimicked transpiration, and so on

    Conformal Imidazolium 1D Perovskite Capping Layer Stabilized 3D Perovskite Films for Efficient Solar Modules

    No full text
    Abstract Although the perovskite solar cells have been developed rapidly, the industrialization of perovskite photovoltaics is still facing challenges, especially considering their stability issues. Here, the new type of benzimidazolium salt, N,Nâ€Č‐dialkylbenzimidazolium iodide, is proposed and functionalized to convert the three‐dimensional (3D) FACs‐perovskite films into one‐dimensional (1D) capping layer topped 1D/3D structure either in individual device or module levels. This conformal interface modulation demonstrates that not only can effectively stabilize FACs‐based perovskite films by inhibiting the lateral and vertical iodide diffusions in devices or modules, ensuring an excellent operation and environmental stability, but also provides an excellent charge transporting channel through the well‐designed 1D crystal structure. Consequently, efficient device performance with power conversion efficiency up to 24.3% is readily achieved. And the large‐area perovskite solar modules with high efficiency (19.6% for the active areas of 18 cm2) and long‐term stability (about 500 h in AM 1.5G illumination or about 1000 h under double‐85 conditions) are also successfully verified
    corecore