33,756 research outputs found
Occupation numbers of the harmonically trapped few-boson system
We consider a harmonically trapped dilute -boson system described by a
low-energy Hamiltonian with pairwise interactions. We determine the condensate
fraction, defined in terms of the largest occupation number, of the
weakly-interacting -boson system () by employing a perturbative
treatment within the framework of second quantization. The one-body density
matrix and the corresponding occupation numbers are compared with those
obtained by solving the two-body problem with zero-range interactions exactly.
Our expressions are also compared with high precision {\em{ab initio}}
calculations for Bose gases with that interact through finite-range
two-body model potentials. Non-universal corrections are identified to enter at
subleading order, confirming that different low-energy Hamiltonians,
constructed to yield the same energy, may yield different occupation numbers.
Lastly, we consider the strongly-interacting three-boson system under
spherically symmetric harmonic confinement and determine its occupation numbers
as a function of the three-body "Efimov parameter".Comment: 16 pages, 7 figure
Calculating Biological Behaviors of Epigenetic States in Phage lambda Life Cycle
Gene regulatory network of lambda phage is one the best studied model systems
in molecular biology. More 50 years of experimental study has provided a
tremendous amount of data at all levels: physics, chemistry, DNA, protein, and
function. However, its stability and robustness for both wild type and mutants
has been a notorious theoretical/mathematical problem. In this paper we report
our successful calculation on the properties of this gene regulatory network.
We believe it is of its first kind. Our success is of course built upon
numerous previous theoretical attempts, but following 3 features make our
modeling uniqu:
1) A new modeling method particular suitable for stability and robustness
study;
2) Paying a close attention to the well-known difference of in vivo and in
vitro;
3) Allowing more important role for noise and stochastic effect to play.
The last two points have been discussed by two of us (Ao and Yin,
cond-mat/0307747), which we believe would be enough to make some of previous
theoretical attempts successful, too. We hope the present work would stimulate
a further interest in the emerging field of gene regulatory network.Comment: 16 pages, 3 figures, 1 tabl
The correlations between the twin kHz QPO frequencies of LMXBs
We analyzed the recently published kHz QPO data in the neutron star low-mass
X-ray binaries (LMXBs), in order to investigate the different correlations of
the twin peak kilohertz quasi-eriodic oscillations (kHz QPOs) in bright Z
sources and in the less luminous Atoll sources. We find that a power-law
relation \no\sim\nt^{b} between the upper and the lower kHz QPOs with
different indices: 1.5 for the Atoll source 4U 1728-34 and
1.9 for the Z source Sco X-1. The implications of our results for
the theoretical models for kHz QPOs are discussed.Comment: 6 pages, accepted by MNRA
Wilson ratio of Fermi gases in one dimension
We calculate the Wilson ratio of the one-dimensional Fermi gas with spin
imbalance. The Wilson ratio of attractively interacting fermions is solely
determined by the density stiffness and sound velocity of pairs and of excess
fermions for the two-component Tomonaga-Luttinger liquid (TLL) phase. The ratio
exhibits anomalous enhancement at the two critical points due to the sudden
change in the density of states. Despite a breakdown of the quasiparticle
description in one dimension, two important features of the Fermi liquid are
retained, namely the specific heat is linearly proportional to temperature
whereas the susceptibility is independent of temperature. In contrast to the
phenomenological TLL parameter, the Wilson ratio provides a powerful parameter
for testing universal quantum liquids of interacting fermions in one, two and
three dimensions.Comment: 5+2 pages, 4+1 figures, Eq. (4) is proved, figures were refine
Scanning Tunneling Spectroscopy and Vortex Imaging in the Iron-Pnictide Superconductor BaFeCoAs
We present an atomic resolution scanning tunneling spectroscopy study of
superconducting BaFeCoAs single crystals in magnetic fields
up to . At zero field, a single gap with coherence peaks at
is observed in the density of states. At and , we image a disordered vortex lattice, consistent
with isotropic, single flux quantum vortices. Vortex locations are uncorrelated
with strong scattering surface impurities, demonstrating bulk pinning. The
vortex-induced sub-gap density of states fits an exponential decay from the
vortex center, from which we extract a coherence length , corresponding to an upper critical field .Comment: 4 pages, 4 figure
Schema Independent Relational Learning
Learning novel concepts and relations from relational databases is an
important problem with many applications in database systems and machine
learning. Relational learning algorithms learn the definition of a new relation
in terms of existing relations in the database. Nevertheless, the same data set
may be represented under different schemas for various reasons, such as
efficiency, data quality, and usability. Unfortunately, the output of current
relational learning algorithms tends to vary quite substantially over the
choice of schema, both in terms of learning accuracy and efficiency. This
variation complicates their off-the-shelf application. In this paper, we
introduce and formalize the property of schema independence of relational
learning algorithms, and study both the theoretical and empirical dependence of
existing algorithms on the common class of (de) composition schema
transformations. We study both sample-based learning algorithms, which learn
from sets of labeled examples, and query-based algorithms, which learn by
asking queries to an oracle. We prove that current relational learning
algorithms are generally not schema independent. For query-based learning
algorithms we show that the (de) composition transformations influence their
query complexity. We propose Castor, a sample-based relational learning
algorithm that achieves schema independence by leveraging data dependencies. We
support the theoretical results with an empirical study that demonstrates the
schema dependence/independence of several algorithms on existing benchmark and
real-world datasets under (de) compositions
Dinitrosyl formation as an intermediate stage of the reduction of NO in the presence of MoO_3
We present first-principles calculations in the framework of
density-functional theory and the pseudopotential approach, aiming to model the
intermediate stages of the reduction of NO in the presence of MoO(010). In
particular, we study the formation of dinitrosyl, which proves to be an
important intermediate stage in the catalytic reduction. We find that the
replacement of an oxygen of MoO by NO is energetically favorable, and that
the system lowers further its energy by the formation of (NO). Moreover,
the geometry and charge distribution for the adsorbed dinitrosyl indicates a
metal-oxide mediated coupling between the two nitrogen and the two oxygen
atoms. We discuss the mechanisms for the dinitrosyl formation and the role of
the oxide in the reaction.Comment: 6 pages, 4 figs, RevTeX. To be published in J. Chem. Phy
- …
