30,187 research outputs found

    Drag suppression in anomalous chiral media

    Get PDF
    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for superfluidity, that the "anomalous component" which gives rise to the anomalous transport will {\it not} contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon -- the motion of the heavy impurity is frictionless, in analogy to the case of a superfluid. We demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.Comment: 6 pages, 1 figure, version accepted in PR

    Tunable Hybridization Between Electronic States of Graphene and Physisorbed Hexacene

    Full text link
    Non-covalent functionalization via physisorption of organic molecules provides a scalable approach for modifying the electronic structure of graphene while preserving its excellent carrier mobilities. Here we investigated the physisorption of long-chain acenes, namely, hexacene and its fluorinated derivative perfluorohexacene, on bilayer graphene for tunable graphene devices using first principles methods. We find that the adsorption of these molecules leads to the formation of localized states in the electronic structure of graphene close to its Fermi level, which could be readily tuned by an external electric field. The electric field not only creates a variable band gap as large as 250 meV in bilayer graphene, but also strongly influences the charge redistribution within the molecule-graphene system. This charge redistribution is found to be weak enough not to induce strong surface doping, but strong enough to help preserve the electronic states near the Dirac point of graphene.Comment: 17 pages, 7 figures, supporting informatio

    Topological px+ipyp_{x}+ip_{y} Superfluid Phase of a Dipolar Fermi Gas in a 2D Optical Lattice

    Full text link
    In a dipolar Fermi gas, the anisotropic interaction between electric dipoles can be turned into an effectively attractive interaction in the presence of a rotating electric field. We show that the topological px+ipyp_{x}+ip_{y} superfluid phase can be realized in a single-component dipolar Fermi gas trapped in a 2D square optical lattice with this attractive interaction at low temperatures. The px+ipyp_{x}+ip_{y} superfluid state has potential applications for topological quantum computing. We obtain the phase diagram of this system at zero temperature. In the weak-coupling limit, the p-wave superfluid phase is stable for all filling factors. As the interaction strength increases, it is stable close to filling factors n=0n=0 or n=1n=1, and phase separation takes place in between. When the interaction strength is above a threshold, the system is phase separated for any 0<n<10<n<1. The transition temperature of the px+ipyp_{x}+ip_{y} superfluid state is estimated and the implication for experiments is discussed.Comment: 10 pages, 4 figure

    Selective Control of Surface Spin Current in Topological Materials based on Pyrite-type OsX2 (X = Se, Te) Crystals

    Full text link
    Topological materials host robust surface states, which could form the basis for future electronic devices. As such states have spins that are locked to the momentum, they are of particular interest for spintronic applications. Understanding spin textures of the surface states of topologically nontrivial materials, and being able to manipulate their polarization, is therefore essential if they are to be utilized in future technologies. Here we use first-principles calculations to show that pyrite-type crystals OsX2 (X= Se, Te) are a class of topological material that can host surface states with spin polarization that can be either in-plane or out-of-plane. We show that the formation of low-energy states with symmetry-protected energy- and direction-dependent spin textures on the (001) surface of these materials is a consequence of a transformation from a topologically trivial to nontrivial state, induced by spin orbit interactions. The unconventional spin textures of these surface states feature an in-plane to out-of-plane spin polarization transition in the momentum space protected by local symmetries. Moreover, the surface spin direction and magnitude can be selectively filtered in specific energy ranges. Our demonstration of a new class of topological material with controllable spin textures provide a platform for experimentalists to detect and exploit unconventional surface spin textures in future spin-based nanoelectronic devices

    A cluster expansion approach to exponential random graph models

    Full text link
    The exponential family of random graphs is among the most widely-studied network models. We show that any exponential random graph model may alternatively be viewed as a lattice gas model with a finite Banach space norm. The system may then be treated by cluster expansion methods from statistical mechanics. In particular, we derive a convergent power series expansion for the limiting free energy in the case of small parameters. Since the free energy is the generating function for the expectations of other random variables, this characterizes the structure and behavior of the limiting network in this parameter region.Comment: 15 pages, 1 figur
    • …
    corecore