41,201 research outputs found

    Observation of Nonlocal Modulation with Entangled Photons

    Full text link
    We demonstrate a new type of quantum mechanical correlation where phase modulators at distant locations, acting on the photons of an entangled pair, interfere to determine the apparent depth of modulation. When the modulators have the same phase, the modulation depth doubles; when oppositely phased, the modulators negate each other.Comment: 4 pages, 4 figure

    Spin relaxation and decoherence of two-level systems

    Full text link
    We revisit the concepts of spin relaxation and spin decoherence of two level (spin-1/2) systems. From two toy-models, we clarify two issues related to the spin relaxation and decoherence: 1) For an ensemble of two-level particles each subjected to a different environmental field, there exists an ensemble relaxation time T1T_1^* which is fundamentally different from T1T_1. When the off-diagonal coupling of each particle is in a single mode with the same frequency but a random coupling strength, we show that T1T_1^* is finite while the spin relaxation time of a single spin T1T_1 and the usual ensemble decoherence time T2T_2^* are infinite. 2) For a two-level particle under only a random diagonal coupling, its relaxation time T1T_1 shall be infinite but its decoherence time T2T_2 is finite.Comment: 5 pages, 2 figure

    Colloidal hard-rod fluids near geometrically structured substrates

    Full text link
    Density functional theory is used to study colloidal hard-rod fluids near an individual right-angled wedge or edge as well as near a hard wall which is periodically patterned with rectangular barriers. The Zwanzig model, in which the orientations of the rods are restricted to three orthogonal orientations but their positions can vary continuously, is analyzed by numerical minimization of the grand potential. Density and orientational order profiles, excess adsorptions, as well as surface and line tensions are determined. The calculations exhibit an enrichment [depletion] of rods lying parallel and close to the corner of the wedge [edge]. For the fluid near the geometrically patterned wall, complete wetting of the wall -- isotropic liquid interface by a nematic film occurs as a two-stage process in which first the nematic phase fills the space between the barriers until an almost planar isotropic -- nematic liquid interface has formed separating the higher-density nematic fluid in the space between the barriers from the lower-density isotropic bulk fluid. In the second stage a nematic film of diverging film thickness develops upon approaching bulk isotropic -- nematic coexistence.Comment: 9 pages, 9 figure
    corecore