41,201 research outputs found
Observation of Nonlocal Modulation with Entangled Photons
We demonstrate a new type of quantum mechanical correlation where phase
modulators at distant locations, acting on the photons of an entangled pair,
interfere to determine the apparent depth of modulation. When the modulators
have the same phase, the modulation depth doubles; when oppositely phased, the
modulators negate each other.Comment: 4 pages, 4 figure
Spin relaxation and decoherence of two-level systems
We revisit the concepts of spin relaxation and spin decoherence of two level
(spin-1/2) systems. From two toy-models, we clarify two issues related to the
spin relaxation and decoherence: 1) For an ensemble of two-level particles each
subjected to a different environmental field, there exists an ensemble
relaxation time which is fundamentally different from . When the
off-diagonal coupling of each particle is in a single mode with the same
frequency but a random coupling strength, we show that is finite while
the spin relaxation time of a single spin and the usual ensemble
decoherence time are infinite. 2) For a two-level particle under only a
random diagonal coupling, its relaxation time shall be infinite but its
decoherence time is finite.Comment: 5 pages, 2 figure
Colloidal hard-rod fluids near geometrically structured substrates
Density functional theory is used to study colloidal hard-rod fluids near an
individual right-angled wedge or edge as well as near a hard wall which is
periodically patterned with rectangular barriers. The Zwanzig model, in which
the orientations of the rods are restricted to three orthogonal orientations
but their positions can vary continuously, is analyzed by numerical
minimization of the grand potential. Density and orientational order profiles,
excess adsorptions, as well as surface and line tensions are determined. The
calculations exhibit an enrichment [depletion] of rods lying parallel and close
to the corner of the wedge [edge]. For the fluid near the geometrically
patterned wall, complete wetting of the wall -- isotropic liquid interface by a
nematic film occurs as a two-stage process in which first the nematic phase
fills the space between the barriers until an almost planar isotropic --
nematic liquid interface has formed separating the higher-density nematic fluid
in the space between the barriers from the lower-density isotropic bulk fluid.
In the second stage a nematic film of diverging film thickness develops upon
approaching bulk isotropic -- nematic coexistence.Comment: 9 pages, 9 figure
Recommended from our members
Provision of secondary frequency regulation by coordinated dispatch of industrial loads and thermal power plants
Demand responsive industrial loads with high thermal inertia have potential to provide ancillary service for frequency regulation in the power market. To capture the benefit, this study proposes a new hierarchical framework to coordinate the demand responsive industrial loads with thermal power plants in an industrial park for secondary frequency control. In the proposed framework, demand responsive loads and generating resources are coordinated for optimal dispatch in two-time scales: (1) the regulation reserve of the industrial park is optimally scheduled in a day-ahead manner. The stochastic regulation signal is replaced by the specific extremely trajectories. Furthermore, the extremely trajectories are achieved by the day-ahead predicted regulation mileage. The resulting benefit is to transform the stochastic reserve scheduling problem into a deterministic optimization; (2) a model predictive control strategy is proposed to dispatch the industry park in real time with an objective to maximize the revenue. The proposed technology is tested using a real-world industrial electrolysis power system based upon Pennsylvania, Jersey, and Maryland (PJM) power market. Various scenarios are simulated to study the performance of the proposed approach to enable industry parks to provide ancillary service into the power market. The simulation results indicate that an industrial park with a capacity of 500 MW can provide up to 40 MW ancillary service for participation in the secondary frequency regulation. The proposed strategy is demonstrated to be capable of maintaining the economic and secure operation of the industrial park while satisfying performance requirements from the real world regulation market
- …