116 research outputs found

    Workflow to facilitate the detection of new psychoactive substances and drugs of abuse in influent urban wastewater

    Get PDF
    The complexity around the dynamic markets for new psychoactive substances (NPS) forces researchers to develop and apply innovative analytical strategies to detect and identify them in influent urban wastewater. In this work a comprehensive suspect screening workflow following liquid chromatography - high resolution mass spectrometry analysis was established utilising the open -source InSpectra data processing platform and the HighResNPS library. In total, 278 urban influent wastewater samples from 47 sites in 16 countries were collected to investigate the presence of NPS and other drugs of abuse. A total of 50 compounds were detected in samples from at least one site. Most compounds found were prescription drugs such as gabapentin (detection frequency 79%), codeine (40%) and pregabalin (15%). However, cocaine was the most found illicit drug (83%), in all countries where samples were collected apart from the Republic of Korea and China. Eight NPS were also identified with this protocol: 3-methylmethcathinone 11%), eutylone (6%), etizolam (2%), 3-chloromethcathinone (4%), mitragynine (6%), phenibut (2%), 25I-NBOH (2%) and trimethoxyamphetamine (2%). The latter three have not previously been reported in municipal wastewater samples. The workflow employed allowed the prioritisation of features to be further investigated, reducing processing time and gaining in confidence in their identification

    Novel, alternative analytical methodology for determination of antimicrobial chemicals in aquatic environments and public use assessment: Extraction sorbent, microbiological sensitivity, stability, and applicability

    Get PDF
    Background: Assessing antimicrobial chemicals from wastewater source to recipient water systems is crucial in planning effective, policy-related interventions for antimicrobial resistance (AMR) risk mitigation. However, the capability of related analytical methods for AMR assessment has not been explored previously. There is also a lack of knowledge on the effectiveness of alternative extraction sorbents with ion-exchange functions, and little information on chemical stability from sampling to analysis as well as preservative options. Hence, our study aims to address the clear need for advanced, broad-range and microbiologically-sensitive methodologies, paired with thorough stability assessments.Results: Oasis (R) WCX ion-exchange was for the first time employed in solid-phase extraction (SPE) for antibacterials, antifungals, antivirals and human metabolites in various water matrices. Analysis was performed using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) on a biphenyl analytical column. The optimized and validated method provided satisfactory accuracy, precision, and recovery for 53 compounds via LC-MS/MS direct injection and for up to 35 compounds via SPE-LC-MS/MS. Method quantification limits (MQLs) were determined in groundwater (0.33-54 ng L-1), surface water (0.53-75 ng L-1), effluent wastewater (2.5-470 ng L-1), and influent wastewater (11-650 ng L-1). As a novel approach, MQLs were compared with minimum inhibitory concentrations, to confirm our method's microbiological sensitivity for studying AMR. Stability assessment revealed that most compounds remained stable in standard solution at-80 degrees C for six months, in various waters at-20 degrees C for eight weeks, and during 24-h sampling at 4 degrees C. Sodium azide was a better preservative than sodium metabisulfite.Significance: Our study is an added value to the analytical methodology for water measurements of antimicrobial chemicals, in which it provides a novel, alternative method that is robust and overall more sensitive than others using generic Oasis (R) HLB sorbents and C18 analytical columns in SPE-LC-MS/MS. Also, the comprehensive data on antimicrobial stability helps reduce methodological uncertainty for future studies. Our method shows sufficient microbiologically-sensitivity and thus is suitable for future (inter)national regulatory water monitoring of AMR

    A novel method for extraction, clean-up and analysis of per- and polyfluoroalkyl substances (PFAS) in different plant matrices using LC-MS/MS

    Get PDF
    Per- and polyfluoroalkyl substances (PFAS) are chemicals of concern due to their persistence, bioaccumulation, and toxic properties. PFAS accumulation in plants poses a risk of human and animal exposure due to consumption of the affected plants, but also allows plants to be used in remediation of PFAS-contaminated soils and groundwater. Therefore, effective extraction, cleanup, and analytical methods for measuring PFAS concentrations in plants are fundamental for research on animal and environmental health. PFAS analysis in plant matrices is complex, due to high matrix interference, and scarcity of methods for analyzing different classes of PFAS. In this study, a simple sample preparation method for PFAS analysis in various plant tissues (leaves, needles, twigs, stems, roots from 10 different species) was developed and validated. Instrumental analysis was performed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method was optimized considering six different extraction conditions and three different cleanup techniques. Methanol as extraction solvent, combined with 1 g ENVI carb cartridges, showed best performance among all extraction conditions and cleanup techniques tested. Method validation showed good recovery (90–120%), high within-day and between-day precision (−1 dry weight (dw)) for different plant matrices. In tests of the method on soil and different plant tissues of silver birch (Betula pendula) and Norway spruce (Picea abies) at a PFAS-contaminated site, 16 of 24 target PFAS were detected in plants and 17 in soil. ƩPFAS concentration in soil was 43 ng g−1 dw. PFAS distribution in silver birch tissues ranged from 7.1 ng g−1 dw in roots to 64 ng g−1 dw in leaves, and in Norway spruce from 14 ng g−1 dw in roots to 16 ng g−1 dw in needles. This novel method for PFAS analysis in plants can be valuable in future monitoring, process understanding, remediation, and risk assessments

    Profiles of environmental antibiotic resistomes in the urban aquatic recipients of Sweden using high-throughput quantitative PCR analysis

    Get PDF
    Antibiotic resistance in aquatic ecosystems presents an environmental health issue worldwide. Urban recipient water quality is susceptible to effluent discharges with antibiotic resistance contaminants and needs to be protected, particularly for those as sources of drinking water production. Knowledge on aquatic resistome profiles in downstream of wastewater treatment plants allows a better understanding of the extent to which antibiotic resistance contaminants emerge and spread in recipient waters, but such information remains very limited in Sweden. The key objective of this study was to determine the resistome profiles of numerous antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and other genes in urban recipient water systems connected to Sweden's major drinking water reservoir. This was achieved through analysis of surface water samples for 296 genes using high-throughput quantitative PCR arrays. A total of 167 genes were detected in at least one of the samples, including 150 ARGs conferring resistance to 11 classes of antibiotics, 7 integrase MGEs and 9 other genes. There was a spatial difference in the resistome profiles with the greatest average relative abundance of resistance genes observed in the water body of Vasteras followed by Uppsala, Stockholm and Eskilstuna, as similar to the general pattern of the antibiotic sales for these regions. ARGs against beta-lactams and sulfonamides showed the highest average relative abundance in the studied water bodies, while vancomycin resistance genes were only found in the Uppsala water environment. Generally, the recipient water bodies were detected with higher numbers of genes and greater relative abundances as compared to the upstream sites. Anthropogenic pollution, i.e., wastewater discharge, in the recipient water was also reflected by the finding of intI, sul1 and crAssphage. Overall, this study provided the first quantitative assessment of aquatic environmental resistomes in Sweden, highlighting the widespread of antibiotic resistance contaminants in urban recipient waters.Peer reviewe

    Are we using more sugar substitutes? Wastewater analysis reveals differences and rising trends in artificial sweetener usage in Swedish urban catchments

    Get PDF
    The market for artificial sweeteners as substitutes for conventional sugar (sucrose) is growing, despite potential health risks associated with their intake. Estimating population usage of artificial sweeteners is therefore crucial, and wastewater analysis can serve as a complement to existing methods. This study evaluated spatial and temporal usage of artificial sweeteners in five Swedish communities based on wastewater analysis. We further compared their levels measured in wastewater with the restrictions during the COVID-19 pandemic in Sweden and assessed health risks to the Swedish population. Influent wastewater samples (n = 194) collected in March 2019-February 2022 from communities in central and southern Sweden were analyzed for acesulfame, saccharin, and sucralose using liquid-chromatography coupled with tandem mass spectrometry. Spatial differences in loads for individual artificial sweetener were observed, with sucralose being higher in Kalmar (southern Sweden), and acesulfame and saccharin in Enkoping and Osthammar (central Sweden). Based on sucrose equivalent doses, all communities showed a consistent prevalence pattern of sucralose > acesulfame > saccharin. Four communities with relatively short monitoring periods showed no apparent temporal changes in usage, but the four-year monitoring in Uppsala revealed a significant (p < 0.05) annual increase of similar to 19 % for sucralose, similar to 9 % for acesulfame and similar to 8 % for saccharin. This trend showed no instant or delayed effects from COVID-19 restrictions, reflecting positively on the studied population which retained similar exposure to the artificial sweeteners despite potential pandemic stresses. Among the three artificial sweeteners, only acesulfame's levels were at the lower end of the health-related threshold for consumption of artificially sweetened beverages; yet, all were far below the acceptable daily intake, indicating no appreciable health risks. Our study provided valuable, pilot insights into the spatio-temporal usage of artificial sweeteners in Sweden and their associated health risks. This shows the usefulness of wastewater analysis for public health authorities wishing to assess future relevant interventions

    Antimicrobial Transformation Products in the Aquatic Environment: Global Occurrence, Ecotoxicological Risks, and Potential of Antibiotic Resistance

    Get PDF
    The global spread of antimicrobial resistance (AMR) isconcerningfor the health of humans, animals, and the environment in a One Healthperspective. Assessments of AMR and associated environmental hazardsmostly focus on antimicrobial parent compounds, while largely overlookingtheir transformation products (TPs). This review lists antimicrobialTPs identified in surface water environments and examines their potentialfor AMR promotion, ecological risk, as well as human health and environmentalhazards using in silico models. Our review also summarizesthe key transformation compartments of TPs, related pathways for TPsreaching surface waters and methodologies for studying the fate ofTPs. The 56 antimicrobial TPs covered by the review were prioritizedvia scoring and ranking of various risk and hazard parameters. Mostdata on occurrences to date have been reported in Europe, while littleis known about antibiotic TPs in Africa, Central and South America,Asia, and Oceania. Occurrence data on antiviral TPs and other antibacterialTPs are even scarcer. We propose evaluation of structural similaritybetween parent compounds and TPs for TP risk assessment. We predicteda risk of AMR for 13 TPs, especially TPs of tetracyclines and macrolides.We estimated the ecotoxicological effect concentrations of TPs fromthe experimental effect data of the parent chemical for bacteria,algae and water fleas, scaled by potency differences predicted byquantitative structure-activity relationships (QSARs) for baselinetoxicity and a scaling factor for structural similarity. Inclusionof TPs in mixtures with their parent increased the ecological riskquotient over the threshold of one for 7 of the 24 antimicrobialsincluded in this analysis, while only one parent had a risk quotientabove one. Thirteen TPs, from which 6 were macrolide TPs, posed arisk to at least one of the three tested species. There were 12/21TPs identified that are likely to exhibit a similar or higher levelof mutagenicity/carcinogenicity, respectively, than their parent compound,with tetracycline TPs often showing increased mutagenicity. Most TPswith increased carcinogenicity belonged to sulfonamides. Most of theTPs were predicted to be mobile but not bioaccumulative, and 14 werepredicted to be persistent. The six highest-priority TPs originatedfrom the tetracycline antibiotic family and antivirals. This review,and in particular our ranking of antimicrobial TPs of concern, cansupport authorities in planning related intervention strategies andsource mitigation of antimicrobials toward a sustainable future

    Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems

    Get PDF
    Wastewater treatment plants (WWTPs) are considered the main sources of chemicals of emerging concern (CECs) in aquatic environments, and can negatively impact aquatic ecosystems. In this study, WWTP influent, effluent, and sludge, and upstream and downstream waters from the WWTP recipient were investigated at 15 locations for a total of 164 CECs, including pharmaceuticals, personal care products, industrial chemicals, per- and polyfluoroalkyl substances (PFASs), and pesticides. In addition, zebrafish (Dania rerio) embryo toxicity tests (ZFET) were applied to WWTP influent and effluent, and upstream and downstream waters from WWTP recipients. A total of 119 CECs were detected in at least one sample, mean concentrations ranging from 0.11 ng/L (propylparaben) to 64,000 ng/L (caffeine), in wastewater samples and from 0.44 ng/L (ciprofloxacin) to 19,000 ng/L (metformin) in surface water samples. Large variations of CEC concentrations were found between the selected WWTPs, which can be explained by differences in CEC composition in influent water and WWTP treatment process. The sludge-water partitioning coefficient (K-d) of CECs showed a significant linear con-elation to octanol/warer partition coefficient (K-ow) (p &lt; 0.001), and thus could be used for predicting their fare in the aqueous and solid phase. The Sigma CEC concentrations in WWTPs declined by on average 60%, based on comparisons of WWTP influent and effluent concentrations. The high concentrations of CECs in WWTP effluent resulted in, on average, 50% higher concentrations of CECs in water downstream of WWTPs compared with upstream. Some WWTP samples showed toxicity in ZFET compared with the respective control group, but no individual CECs or groups of CECs could explain this toxicity. These results could provide a theoretical basis for optimization of existing treatment systems of different designs, and could significantly contribute to protecting recipient waters. (C) 2020 The Authors. Published by Elsevier B.V

    Antibiotics as a silent driver of climate change? A case study investigating methane production in freshwater sediments

    Get PDF
    Methane (CH4) is the second most important greenhouse gas after carbon dioxide (CO2) and is inter alia produced in natural freshwater ecosystems. Given the rise in CH4 emissions from natural sources, researchers are investigating environmental factors and climate change feedbacks to explain this increment. Despite being omnipresent in freshwaters, knowledge on the influence of chemical stressors of anthropogenic origin (e.g., antibiotics) on methanogenesis is lacking. To address this knowledge gap, we incubated freshwater sediment under anaerobic conditions with a mixture of five antibiotics at four levels (from 0 to 5000 mu g/L) for 42 days. Weekly measurements of CH4 and CO2 in the headspace, as well as their compound-specific delta C-13, showed that the CH4 production rate was increased by up to 94% at 5000 mu g/L and up to 29% at field-relevant concentrations (i.e., 50 mu g/L). Metabarcoding of the archaeal and eubacterial 16S rRNA gene showed that effects of antibiotics on bacterial community level (i.e., species composition) may partially explain the observed differences in CH4 production rates. Despite the complications of transferring experimental CH4 production rates to realistic field conditions, the study indicated that chemical stressors contribute to the emissions of greenhouse gases by affecting the methanogenesis in freshwaters

    Could wastewater analysis be a useful tool for China?: a review

    Get PDF
    Analysing wastewater samples is an innovative approach that overcomes many limitations of traditional surveys to identify and measure a range of chemicals that were consumed by or exposed to people living in a sewer catchment area. First conceptualised in 2001, much progress has been made to make wastewater analysis (WWA) a reliable and robust tool for measuring chemical consumption and/or exposure. At the moment, the most popular application of WWA, sometimes referred as sewage epidemiology, is to monitor the consumption of illicit drugs in communities around the globe, including China. The approach has been largely adopted by law enforcement agencies as a device to monitor the temporal and geographical patterns of drug consumption. In the future, the methodology can be extended to other chemicals including biomarkers of population health (e.g. environmental or oxidative stress biomarkers, lifestyle indicators or medications that are taken by different demographic groups) and pollutants that people are exposed to (e.g. polycyclic aromatic hydrocarbons, perfluorinated chemicals, and toxic pesticides). The extension of WWA to a huge range of chemicals may give rise to a field called sewage chemical-information mining (SCIM) with unexplored potentials. China has many densely populated cities with thousands of sewage treatment plants which are favourable for applying WWA/SCIM in order to help relevant authorities gather information about illicit drug consumption and population health status. However, there are some prerequisites and uncertainties of the methodology that should be addressed for SCIM to reach its full potential in China
    • …
    corecore