41,173 research outputs found

    Evolutionary computation enabled game theory based modelling of electricity market behaviours and applications

    Get PDF
    The collapse of the Californian electricity market system in 2001 has highlighted urgency in research in intelligent electricity trading systems and strategies involving both suppliers and customs. In their trading systems, power generation companies under the new electricity trading arrangement (NETA) of the UK are now developing gaming strategies. However, modelling of such "intelligent" market behaviours is extremely challenging, because traditional mathematical and computer modelling techniques cannot cope with the involvement of game theory. In this paper, evolutionary computation enabled modelling of such system is presented. Both competitive and cooperative game theory strategies are taken into account in evolving the intelligent model. The model then leads to intelligent trading strategy development and decision support. Experimental tests, verification and validation are carried out with various strategies, using different model scales and data published by NETA. Results show that evolutionary computation enabled game theory involved modelling and decision making provides an effective tool for NETA trading analysis, prediction and support

    Calculations of Magnetic Exchange Interactions in Mott--Hubbard Systems

    Full text link
    An efficient method to compute magnetic exchange interactions in systems with strong correlations is introduced. It is based on a magnetic force theorem which evaluates linear response due to rotations of magnetic moments and uses a novel spectral density functional framework combining our exact diagonalization based dynamical mean field and local density functional theories. Applications to spin waves and magnetic transition temperatures of 3d metal mono--oxides as well as high--T_{c} superconductors are in good agreement with experiment

    Generating EPR beams in a cavity optomechanical system

    Full text link
    We propose a scheme to produce continuous variable entanglement between phase-quadrature amplitudes of two light modes in an optomechanical system. For proper driving power and detuning, the entanglement is insensitive with bath temperature and QQ of mechanical oscillator. Under realistic experimental conditions, we find that the entanglement could be very large even at room temperature.Comment: 4.1 pages, 4 figures, comments are welcome; to appear in PRA, published version with corrections of typo

    FRW and domain walls in higher spin gravity

    Get PDF
    We present exact solutions to Vasiliev's bosonic higher spin gravity equations in four dimensions with positive and negative cosmological constant that admit an interpretation in terms of domain walls, quasi-instantons and Friedman-Robertson-Walker (FRW) backgrounds. Their isometry algebras are infinite dimensional higher-spin extensions of spacetime isometries generated by six Killing vectors. The solutions presented are obtained by using a method of holomorphic factorization in noncommutative twistor space and gauge functions. In interpreting the solutions in terms of Fronsdal-type fields in spacetime, a field-dependent higher spin transformation is required, which is implemented at leading order. To this order, the scalar field solves Klein-Gordon equation with conformal mass in (anti) de Sitter space. We interpret the FRW solution with de Sitter asymptotics in the context of inflationary cosmology and we expect that the domain wall and FRW solutions are associated with spontaneously broken scaling symmetries in their holographic description. We observe that the factorization method provides a convenient framework for setting up a perturbation theory around the exact solutions, and we propose that the nonlinear completion of particle excitations over FRW and domain wall solutions requires black hole-like states.Comment: 63 page

    Universal Tomonaga-Luttinger liquid phases in one-dimensional strongly attractive SU(N) fermionic cold atoms

    Full text link
    A simple set of algebraic equations is derived for the exact low-temperature thermodynamics of one-dimensional multi-component strongly attractive fermionic atoms with enlarged SU(N) spin symmetry and Zeeman splitting. Universal multi-component Tomonaga-Luttinger liquid (TLL) phases are thus determined. For linear Zeeman splitting, the physics of the gapless phase at low temperatures belongs to the universality class of a two-component asymmetric TLL corresponding to spin-neutral N-atom composites and spin-(N-1)/2 single atoms. The equation of states is also obtained to open up the study of multi-component TLL phases in 1D systems of N-component Fermi gases with population imbalance.Comment: 12 pages, 3 figure
    corecore