125 research outputs found

    Sludge disinfection using electrical thermal treatment: The role of ohmic heating

    Get PDF
    Electrical heating has been proposed as a potential method for pathogen inactivation in human waste sludge, especially in decentralized wastewater treatment systems. In this study, we investigated the heat production and E. coli inactivation in wastewater sludge using electrical thermal treatment. Various concentrations of NaCl and NH_4Cl were tested as electrolyte to enhance conductivity in sludge mixtures. At same voltage input (18 V), sludge treated with direct current (DC) exhibited slower ascent of temperature and lower energy efficiencies for heat production comparing to that using alternate current (AC). However, DC power showed better performance in E. coli inactivation due to electrochemical inactivation in addition to thermal inactivation. Greater than 6log_(10) removal of E. coli was demonstrated within 2 h using 0.15 M of NaCl as electrolyte by AC or DC power. The heat production in sludge was modeled using Maxwell–Eucken and effective medium theory based on the effective electrical conductivity in the two-phase (liquid and solid) sludge mixtures. The results showed that the water and heat loss is a critical consideration in modeling of sludge temperature using ohmic heating. The experimental data also suggested that the models are less applicable to DC power because the electrochemical reactions triggered by DC reduce the concentration of NH_4+ and other ions that serve as electrolyte. The results of this study contribute to the development of engineering strategies for human waste sludge management

    Sludge disinfection using electrical thermal treatment: The role of ohmic heating

    Get PDF
    Electrical heating has been proposed as a potential method for pathogen inactivation in human waste sludge, especially in decentralized wastewater treatment systems. In this study, we investigated the heat production and E. coli inactivation in wastewater sludge using electrical thermal treatment. Various concentrations of NaCl and NH_4Cl were tested as electrolyte to enhance conductivity in sludge mixtures. At same voltage input (18 V), sludge treated with direct current (DC) exhibited slower ascent of temperature and lower energy efficiencies for heat production comparing to that using alternate current (AC). However, DC power showed better performance in E. coli inactivation due to electrochemical inactivation in addition to thermal inactivation. Greater than 6log_(10) removal of E. coli was demonstrated within 2 h using 0.15 M of NaCl as electrolyte by AC or DC power. The heat production in sludge was modeled using Maxwell–Eucken and effective medium theory based on the effective electrical conductivity in the two-phase (liquid and solid) sludge mixtures. The results showed that the water and heat loss is a critical consideration in modeling of sludge temperature using ohmic heating. The experimental data also suggested that the models are less applicable to DC power because the electrochemical reactions triggered by DC reduce the concentration of NH_4+ and other ions that serve as electrolyte. The results of this study contribute to the development of engineering strategies for human waste sludge management

    Design and Parameter Study of a Self-Compensating Hydrostatic Rotary Bearing

    Get PDF
    The influence of design parameters on the static performance of a newly designed self-compensating hydrostatic rotary bearing was investigated. The bearing was designed by incorporating the main attributes of angled-surface self-compensating bearing and opposed-pad self-compensating bearing. A governing model based on flow conservation was built to theoretically study the static performance, and the methodology was validated by experiments. It is pointed out that the influence factors on the bearing static performance are the designed resistance ratio of the restricting land to the bearing land, the inner resistance ratio of the land between pockets to that between the pocket and the drain groove, the initial clearance ratio of the restricting gap to the bearing gap, and the semiconical angle. Their effects on the load carrying capacity and stiffness were investigated by simulation. Results show that the optimum designed resistance ratio is 1; the initial clearance ratio should be small, and the inner resistance ratio should be large

    Negative flat band magnetism in a spin-orbit coupled correlated kagome magnet

    Full text link
    It has long been speculated that electronic flat band systems can be a fertile ground for hosting novel emergent phenomena including unconventional magnetism and superconductivity. Although flat bands are known to exist in a few systems such as heavy fermion materials and twisted bilayer graphene, their microscopic roles and underlying mechanisms in generating emergent behavior remain elusive. Here we use scanning tunneling microscopy to elucidate the atomically resolved electronic states and their magnetic response in the kagome magnet Co3Sn2S2. We observe a pronounced peak at the Fermi level, which is identified to arise from the kinetically frustrated kagome flat band. Increasing magnetic field up to +-8T, this state exhibits an anomalous magnetization-polarized Zeeman shift, dominated by an orbital moment in opposite to the field direction. Such negative magnetism can be understood as spin-orbit coupling induced quantum phase effects tied to non-trivial flat band systems. We image the flat band peak, resolve the associated negative magnetism, and provide its connection to the Berry curvature field, showing that Co3Sn2S2 is a rare example of kagome magnet where the low energy physics can be dominated by the spin-orbit coupled flat band. Our methodology of probing band-resolved ordering phenomena such as spin-orbit magnetism can also be applied in future experiments to elucidate other exotic phenomena including flat band superconductivity and anomalous quantum transport.Comment: Nature Physics onlin
    • …
    corecore