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Abstract. The phase sensitive demodulation has been widely used in many

applications, e.g. impedance measurement, communication, sonar and radar systems.

In most cases, white noise is assumed for system analysis and improvement. However,

impulsive noise is frequently encountered in many applications, which imposes great

challenges in these systems. The paper presents a novel nonlinear filter method

intended for the impulsive noise removal. Unlike its linear counterparts, the proposed

method tries to figure out and remove the impulsive noise in time domain rather than in

frequency domain. This ensures simpler implementation in digital signal processing.

We compare the performance of the proposed method with the standard PSD and

the PSD with low-pass filter in suppressing both white noise and impulsive noise

and analyse the theoretical limits of the signal-to-noise ratio (SNR). A FPGA based

hardware implementation of the proposed method is presented for reference. Our

numerical simulations and experimental results validate the theoretical predications,

which show that the proposed method can provide SNR of 10dB better than the

standard PSD method.

1. Introduction

The phase sensitive demodulation (PSD) is a critical problem encountered in many

communication and measurement systems. Numerous methods for demodulation of the

carrier amplitude and phase, including analog multiplier demodulation technique has

become standard. By using PSD, it is possible to eliminate the influence of low-frequency

noise sources such as 1/f noise, mechanical vibrations, atmospheric fluctuations in

remote sensing optoelectronic instrumentation, etc. The basic principle of the PSD

is to use a carrier wave of certain frequency, i.e. f : z(t) = cos(2πft), to modulate the

physical parameter that to be measured. Thus, instead of directly measurement, we get

‡ To whom correspondence should be addressed.
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Figure 1. The digital PSD model. a denotes the amplitude change caused by the

DUT. The signal az(t) is then corrupted by noise n(t).

the modulated signal, i.e. y(t), which is also corrupted by the additive noise. The job of

digital PSD is to estimate the signal changes in amplitude and phase, i.e. A and ϕ, that

caused by the device under test (DUT). By taking advantage the correlation between y(t)

and the reference signals. The block diagram of digital PSD is schematically illustrated

in Figure.1.

Thus, the received signal at the sampler is

y(t) = A cos(2πft+ ϕ) + n(t) (1)

which after sampling at rate 1/T corresponds to the sequence

y(kT ) = A cos(
2πk

N
+ ϕ) + n(kT ) (2)

where N = fs/f is the sample number in a sine-wave signal period and fs is the sampling

frequency. For convenience, equation(2) can be formulated in a simple form

y(k) = A cos(
2πk

N
+ ϕ) + n(k) (3)

The digital PSD is to find an estimate for A and ϕ by using a series of successive

samples of y(k) and the following equations,

Uc(k) =
1

N

k
∑

n=k−N

y(n)rc(n) = A cosϕ (4)

Us(k) =
1

N

k
∑

n=k−N

y(n)rs(n) = A sinϕ (5)

(6)






A =
√

U2
c + U2

s

ϕ = arctg(Us/Uc)
(7)

It is usually assumed that the distribution of the measurement errors is Gaussian,

or at least very close to Gaussian. If this assumption holds, the PSD is not only the

best linear estimator, but also is the most efficient. In this paper, however, we want

to investigate the case where the assumption fails. As non-Gaussian noise arises, this

approach can place severe demands on the linear filters. This is especially true when
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impulse noises caused by electrostatic discharge . We here report nonlinear filtering

method for digital PSD that is better in the sense that not only the Gaussian noise but

also the non-Gaussian noise can be filtered.The basic concept of a linear filter is the

separation of signals based on their non-overlapping frequency content. For nonlinear

filters it is more convenient to consider separating signals based on whether they can be

considered smooth or rough (noise-like).

2. Methodology

Median filter is a classical approach to remove impulsive noise. The standard median

filter for digital signal processing was first suggested by Tukey [19]. Let x(n) be the

signal to be smoothed. Then the output of the standard median filter of length 2k + 1

with the center of the window at point n, is defined by

y(n) = MED[x(n − k), x(n− k + 1), ..., x(n+ k)] (8)

where MED denotes the median.

Median filter can be used for removing impulses in an image without smearing the

edge information. This is of significant importance in image processing. The success of

median filters is based on two intrinsic properties: edge preservation and efficient noise

attenuation with robustness against impulsive type noise. Neither property can be

achieved by traditional linear filtering techniques without resorting to time-consuming

manipulations. Median filter will not smear out sharp discontinuities in the data, as

long as the duration of the discontinuity exceeds some critical duration. Thus the size of

moving median filter which can be used is strictly dependent on the minimum duration of

discontinuity which the user wishes to preserve. The feature is especially of importance

for digital signal processing applications where sharp discontinuities caused by impulsive

noise exist. In some cases, however, the durations of the samples contaminated by the

impulsive noise are usually not identical. Thereby, the length of a moving median filter

needs to be selected with care. In most cases, the general trend is that the longer the

moving median, the more it smooth out. Unfortunately, the sine-wave signal does not

belong to the class.

As illustrated in Fig.2, a median filter with window length of 3 slides sequentially

over the signals and the mid-sample within the window is replaced by the median of all

samples inside the filter window. Two samples contaminated by the impulsive noise are

presented in the signal sequence. Instead of smoothing the impulsive noise, the median

filter replaces the impulsive noise with its neighboring samples, as indicated in Fig.2(b).

In addition, median filters also introduce a great deal of distortion by modifying the

genuine signal samples that are mistaken for impulsive noise. For instances, some

genuine samples, i.e. the maximum and minimum valued samples of the sine-wave

signal and the samples that are next to impulsive noise, may be distorted by the median

filter. It can be readily deduced that the longer of the median filter window, the more

samples will be contaminated.
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Figure 2. Input and output of a median filter. Note that in addition to suppressing

the impulsive outlier, the filter also distorts some genuine signal components.
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Figure 3. The sine-wave signals

In consideration of the aforementioned disadvantages of median filter, directly

applying median filter in PSD, which takes sine-wave carrier as a necessity, is unable to

produce high quality signal restoration. Even so, we managed to design an alternative

method to apply a median filter to restore the sine-wave signals that are contaminated by

impulsive noise. This method is based on a simple fact that the sine-wave signal exhibits

significant periodicity even if it were seriously contaminated. By taking advantage of

its periodicity, a series of repeated samples that occurred at an identical phase of each

sine-wave period can be extracted from a sine-wave signal sequence. As illustrated in

Fig.3, a number of consecutively periods of the sine-wave are arranged along a new axis

in the new coordinate system, i.e. z-axis. The advantage is that the samples along z-axis

are of identical phase in the sine-wave period, which results in a relatively flat signal, as

shown in Fig.3. If the duration of the corrupted samples in the original signal does not

exceed N samples, i.e. the duration of a complete sine-wave, only one corrupted signal

will appear in the rearranged signal.
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Assuming that

y = [y(0), y(1), y(2), ..., y(n), ...], n ∈ N

are successive samples of the corrupted sine-wave signal.

The method is not intended to directly applying median filter to y. The vector y

is first formulated into matrix form,

Y =





















y(0) y(1) . . . y(N − 1)

y(N) y(N + 1) . . . y(2N − 1)
...

...
...

...

y(jN) y(jN + 1) . . . y((j + 1)N − 1)
...

...
...

...





















=
[

yj,k
]

M×N

=
[

Y0 Y1 . . . Y(N−1)

]

, j ∈ N (9)

where yj,k = y(jN + k) represents the element of matrix Y, M denotes the number of

row in the matrix and Yk is the kth column of the matrix Y, k = 0, 1, . . . , N − 1.

Yk =
[

y(k) y(N + k) y(2N + k) . . . y(jN + k) . . .
]T

(10)

By substituting equation(3), the Yk can be formulated to

Yk =





















y0,k
y1,k
...

yj,k
...





















= A cos(
2πk

N
+ ϕ) ·





















1

1
...

1
...





















+





















n0,k

n1,k

...

nj,k

...





















, j ∈ N (11)

The signal represented by Yk is a relatively flat signal with offset of A cos(2πk
N

+ϕ),

which is contaminated by n(k). There are two facts should be emphasised,

(i) The noise, either Gaussian or impulsive noise, is of independent and identical

distribution (i.i.d.), and

(ii) the possibility of occurrence of N successive samples caused by impulsive noise is

much less than that of 1 samples.

Therefore, it is more convenient to use a shorter median filter for impulsive noise

removal along the columns. The filter output for Yk can be described by

Ŷk = MED(Yk) (12)

Correspondingly,

Ŷ =
[

Ŷ0 Ŷ1 . . . Ŷ(N−1)

]

=
[

ŷj,k
]

M×N
, j ∈ N (13)

The digital PSD can be described by the following matrix equation,
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U = Ŷ ·R
=

[

ŷj,k
]

M×N
·
[

rk
]

N×1
=

[

uj

]

M×1
(14)

where

rk =
1

N
ei

2πk

N , (15)

uj =
N−1
∑

k=0

ŷj,k · rk =
1

N

N−1
∑

k=0

ŷj,k · ei
2πk

N (16)

Finally, the demodulation results, i.e. A and ϕ, can be calculated by
{

A = |uj|
ϕ = arg(uj)

(17)

3. Hardware implementation

The goal of digital PSD is to realize synchronous modulation and demodulation with

the maximum usage of digital signal processing techniques, which has already been

reported by many researches[xxx]. It should be noted that the proposed method requires

much less logic resources than its linear counterparts, i.e. FIR filters. And most of the

mainstream DSP and FPGA chips from the major producers can fulfill the tasks required

by a digital PSD.

The FPGA based digital PSD itself is not a novel design and has already been

employed for electrical capacitance tomography system[cite: a high performance digital

for ect]. The system is implemented with a low cost FPGA, i.e. Xilinx Spartan3-

400. The FPGA works at 50MHz and contains 16 embedded multipliers, which provide

computational units for implementing the digital PSD and the filter operations. Since

the FPGA has no on-chip nonvolatile memory, the program is placed in an external

flash memory. The selected ADCs are of 14-bit, powered at 5.0V, support a maximum

conversion rate of 10MS/s. The programmable gain amplifier (PGA) is used to extend

the input signal range and acts as voltage buffer for the ADCs. The PGAs provide

three control bits that are encoded to provide 8 gains/attenuations, i.e. −22, −16, −10,

−4, 2, 8 and 14dB. A direct digital synthesizer (DDS) IP core in FPGA generates

sine-wave digital signal, which is then passed to a DAC (Analog Devices AD9754, 14-bit

@ 105MS/s) to generate the excitation signal.

To implement the proposed method, a few functional blocks are added to the signal

path prior to the PSD block, as illustrated in Figure.4. The acquired signal by ADC,

i.e. y(n), is multiplexed to three FIFO (first in, first out) units for data buffering. The

timing sequence related to Figure.4 is illustrated in Figure.5. Each FIFO can store N

samples, which correspond to a period of sine-wave signal, i.e. T = N · Ts. The wr and

rd signals are used to control the FIFO data in and out. Actually, the proposed method

is implemented in a pipeline mode, which can be divided into three steps, i.e.
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Figure 4. The diagram of modified median filter in digital PSD.

y(t)
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FIFO#1-wr

FIFO#2-wr

FIFO#3-wr

FIFOs-rd

MF-en

PSD-en

Figure 5. The timing sequence of the FPGA based implementation.

(i) Assert the FIFO wr signal one after another in a numerical order in order to fill

the FIFOs with the ADC samples.

(ii) Once FIFO #3 begins to stream in, assert the FIFOs-rd and MF-en to start the

median filter, which will enable the median filter to read one samples from each

FIFO at a time and produces one median, i.e. ŷ(n).

(iii) Assert the PSD-en signal to start the demodulation process once the filter output

is ready.

Note that it is not necessarily to wait for all FIFOs are filled with samples to

start the median filter. Also the PSD block can begin the demodulation before

the median filter completes all the processes. One can even start the step (i) once

FIFO #1 is no longer filled with samples. Actually, Tp is as short as 5Tclk, where

Tclk = 1/50MHz = 20ns is the FPGA clock period. In other words, the FPGA will

produce the final demodulation result within 100ns once the ADC sampling process

completes. As compared with the sine-wave period T = 10µs, Tp is much smaller and

can be readily neglected in calculating the process time. This is benefited from the

pipeline design, in which one can take advantage of the parallel processing capabilities

of the FPGA to increase the efficiency of sequential code.
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Figure 6. The median filter.

c1 c2 c3 out

0 0 0 error

0 0 1 a2

0 1 0 a1

0 1 1 a3

1 0 0 a3

1 0 1 a1

1 1 0 a2

1 1 1 a1 = a2 = a3

Table 1. The truth table of the lookup table.

The median filter is implemented with FPGA logics, as schematically shown in

Figure.6. The comparators are to find whether one input is greater than the other one.

Taking the comparator #1 for example, it will output

c1 =

{

1 if (a1 ≥ a2)

0 if (a1 < a2)
(18)

By pairwise comparisons, the comparators produce three signals, i.e. c1, c2 and c3.

And these signals are used as input to a lookup table, whose outputs are determined by

Table.1. It spends 2Tclk to generate a median filter results.

4. Results and Discussions

To assess the performance of the proposed method in removing impulsive noise, we

compared the effect of the modified median filter against its linear counterpart, i.e. FIR

filter, by evaluating the signal-to-noise ratio (SNR) and equivalent noise bandwidth

(ENBW). In particular, we got the original signal with additive white gaussian noise

and impulsive noise of different powers to test the method by numerical simulation.

Also the proposed hardware system based on FPGA is also tested.
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4.1. Numerical simulations

In the numerical simulation, the signal model described by equation(1) is employed. We

use power in dBW to measure the noise powers, i.e.

Pwn(dBW ) = 10 lg
P̄wn

1W
(dBW ) (19)

Pimn(dBW ) = 10 lg
P̄imn

1W
(dBW ) (20)

where, P̄imn and P̄wn denote the average power of the impulsive noise and the white

noise, respectively.

The signal power is also measured in the same way,

Psig(dBW ) = 10 lg
P̄sig

1W
(dBW ) (21)

For simplicity, the amplitude of the sine-wave signal in equation(1) is set to A = 1,

which will be taken as the true value in the following analysis.

The SNR of the PSD output is used to evaluated the data quality,

SNR = 10 lg

∑N
i=1[d(i)]

2

∑N
i=1[d(i)− d̂]2

(22)

where d(i) is the ith data in a length N data set that obtained consecutively from the

PSD, and d̂ is the true value of the measured parameter.

In this research, the white noise is treated as a zero-mean normal distribution

model. And the impulsive noise is simulated by a Bernoulli-Gaussian model, in which

the random time of occurrence of the impulsive noise is modelled by a binary Bernoulli

process nb(m) and the amplitude of the impulses is modelled by a Gaussian process

ng(m). The probability mass function is given by

PB[nb(m)] =

{

α for nb(m) = 1

1− α for nb(m) = 0
(23)

where α is the probability when nb(m) = 1. A zero-mean Gaussian probability density

function (pdf) of the amplitude of impulsive noise is given by

fN [ng(m)] =
1√
2πσ2

exp[−n2
g(m)

2σ2
] (24)

where σ2 is the variance of the noise amplitude. In a Bernoulli-Gaussian model the pdf

of an impulsive noise is given by

fBG
N [ni(m)] = (1− α)δ[ni(m)] + αfN [ni(m)] (25)

where δ[ni(m)] is the Kronecker delta function.

To assess the performance of the proposed method (PSD+MF), we compared it

against other two methods, i.e.
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Figure 7. The impulse response of the FIR filter.

• PSD: the standard PSD method that is designed with no pre-filter ahead.

• PSD+LPF: the PSD with low-pass filter, in which a 40th order FIR low-pass filter

with a cut-off frequency of 300kHz is employed. Its characteristics are illustrated

in Figure.7.

The SNR results that calculated using equation(22) are illustrated in Figure.8, in

which Pimn varies between −30 and 50dBW and the Pwn is set to 0, 10 and 20dB,

respectively.It can be found that the trends of the curves in the three figures are similar.

The curves roughly keep flat at beginning until they start to decrease at a fixed slope.

The curves can be divided into two parts by the turning point, which is actually the

balancing point of the white noise and impulsive noise, i.e. Pimn = Pwn. The white noise

plays a dominant role in the first part. The curve of the proposed method is usually

∼ 3dB higher than that of the other methods, while it is difficult to tell the differences

between the two lower curves. In consideration of the minor SNR improvement of the

PSD+LPF method, it can be said that it is not worthy of the system complexity that

added by the FIR filter. In the latter part, the Pimn is greater than Pwn, which means

that the impulsive noise becomes the dominant part in the noise. As Pimn increases, the

SNR curves begin to fall accordingly at a slope of approximately −1dB/dBW . At the

same time, however, the advantage of the proposed method in improving SNR becomes

significant, i.e. from ∼ 3dB to ∼ 13dB.

It is interested that the low-pass filter has few contribution to enhancing the SNR

of the PSD. It may be argued that the employed low-pass filter is not an optimal one.

The equivalent noise bandwidth (ENBW) of the PSD and its low-pass filter should be

discussed to fully understand the role of the low-pass filter in the PSD algorithm. The

ENBW of a linear system, i.e. H(f), is the width of a rectangle whose area contains

the same total white noise power as H(f), which can be described by
∫

∞

0
|H(f)|2df = |Hm(f)|2 ·∆f (26)

where, Hm(f) is the maximum value of H(f) and

∆f =
∫

∞

0

|H(f)|2
|Hm(f)|2

df (27)
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Figure 8. SNRpsd v.s. Pimn.

is the ENBW of the linear system. The ENBW of a digital PSD is given by

∆fPSD =
1

2Ta

=
1

2NaTs

(28)

where Na is the number of the samples used for generating one demodulation result and

Ts = 1/fs is the sampling time. Theoretically, ∆fPSD achieves its the maximum value

of f/2 when only one sine-wave period is used for demodulation, i.e. Ta = 1/f and it

can be further reduced by extending Ta. On the other hand, the ENBW of a low-pass

filter is greater than its −3dB cut-off frequency, i.e. ∆fLPF > fc, while fc > f . Finally,

we get a concise result

∆fPSD < ∆fLPF (29)

It can be concluded that the PSD always has a narrower ENBW than its pre-filter.

And this is valid for any low-pass filter in a PSD system. Therefore, once the white noise



Nonlinear filter 12

R1

R2

R3

+

−
A

Vs

Vn Vo

R1=R2=R3=R

Figure 9. The experimental circuit.

falls into the ENBW of the PSD, it is necessarily within the ENBW of the pre-filter and

will not be attenuated by the filter. And this explains why the low-pass filter cannot

help enhance the SNR of the PSD.

Theoretically, if the white noise was assumed, the SNR improvement of the digital

PSD can be obtained by

∆SNR =
SNRout

SNRin

= 10 lg
fs/2

∆fPSD

= 10 lg(Na) (30)

where fs/2 is the Nyquist frequency. Ideally, the system SNR can be enhanced by

increasing the number of the samples Na as long as the measured parameter remains

unchanged.

4.2. Experiments

In the experiments, the amplitude and frequency of the sine-wave signal are 2Vp−p

and 100kHz, respectively. The ADC input range and sampling frequency are 5V and

10MHz, respectively. Some signal generators now provide such function as arbitrary

waveform generator, which can store user-defined arbitrary waveform in its nonvolatile

memory. Thereby, we may take advantage of it to generate the impulsive noise with

adjustable amplitude. The signal and the impulsive noise are mixed together with the

electronic circuit in Figure.9.

The output signal Vo can be obtained by

Vo = −(Vs + Vn) (31)

In addition, it is assumed that the white noise is already presented in the circuit. In

the experiments, each demodulation result is calculated using 100 samples, which is same

as that of the numerical simulation. The SNRs are obtained for noise amplitudes (|Vn|)
are 0.25, 0.5, 1, 2 and 4V, respectively. According to the results listed in Table.2, the

proposed method can achieve better SNR in the experiments as well as in the numerical

simulation. The improvement on SNR can be as high as 10dB.

In addition, it is also found that the SNR data are close when |Vn| = 2 and 4.

Note that the input range of ADC is 5V. To avoid saturation characteristic and possible

damage to the ADC, the ADC input incorporate a voltage clamp to ensure the ADC

input will always be within a range between -2.5V and +2.5V. Even though the additive
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|Vn|(V) SNR(dB)

PSD PSD+LPF PSD+MF

0.25 34.4 34.0 41.2

0.5 29.5 29.8 38.9

1 24.6 25.2 35.7

2 21.5 22.1 32.2

4 21.4 22.2 31.4

Table 2. The SNRs obtained in the experiments.

noise is large, it will be saturated by the clamping diodes and its power will be limited,

which will affect the experimental results to some extent.

It may be argued that the impulsive noise might be further reduced by limiting the

ADC input range since the voltage saturation could reduce the noise power. In fact, this

is not a good idea. The distribution of the results for |Vn| = 0.25 and 4 are illustrated

in Figure.10 and 11, respectively. It can be deduced that |Vo| are much less likely to be

greater than 2.5V when |Vn| is smaller. As can be seen in Figure.10, |Vn| = 0.25V . The

distributions for both methods are normal distributions with mean values very close

to |Vs|. In contrast, as the datasets are not symmetrical shape in Figure.11 in which

|Vn| = 4V , we can clearly rule out that a normal distribution model would be a suitable

choice. In addition, we can find that the possibility of V > |Vs| is much less than that of

V ≤ |Vs|, which results in the lower mean values. This can be explained by the voltage

saturation. Thereby, it can be concluded that the voltage saturation will make the mean

value of the result a bias estimation to the measured parameter, which will affect the

measurement accuracy.

5. Conclusions

By carefully examining how the impulsive noise affects the PSD performance we were

able to devise a more efficient filtering scheme, capable of increasing both the PSD

stability and accuracy. In particular, we achieved a SNR improvement of ∼ 10dB as

compared with that of the standard PSD method. This method was eventually verified

in an electrical impedance measurement system, where the FPGA based hardware

implementation is simple, requiring only a modified median filter to be added ahead

of the digital PDS block. However, this scheme is not limited to technique, and can be

used whenever a periodical signal is measured with a digital PSD. Moreover, the method

we provided can be readily used as a reference where periodical signal is presented. Our

results are particularly suited for situations where a better SNR would be desirable

while the impulsive noise dominates the noise.
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Figure 10. The result distributions, |Vn| = 0.25V .
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Figure 11. The result distributions, |Vn| = 4V .
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