23 research outputs found

    Lubrication and Friction of Porous Oil Bearing Materials

    Get PDF
    In order to address poor lubrication of porous bearings due to the seepage flow of oil into the porous medium, multi-layered sintered composite bearings have been developed. Multi-layered bearings achieve a combination of high strength and good lubrication. Lubrication model of the porous multi-layer materials in polar coordinates was established based on Darcy’s law. And the effect of surface Darcy flow and porous structure on the lubrication capacity were discussed by using the finite difference method. In the end, the tribology experiments of the multi-layer materials were presented on the end face tribo-tester to verify the simulation results. Results show that the lubrication performance of the multi-layer materials is better than that of the single layer materials. With the decrease of the surface porosity, the lubrication performance becomes better in the given range of surface layer. Also, it can be significantly improved if considering the surface Darcy flow. Within a certain range, the effects of surface Darcy flow on lubrication performance are more obviously with higher speed. There is a good agreement between the numerical analysis and the measurement. Research work provides a theoretical basis for analysis and design of multi-layer sintering bearing material

    Reconstructing Terrestrial Water Storage Variations from 1980 to 2015 in the Beishan Area of China

    No full text
    Terrestrial water storage (TWS) is a key element in the global and continental water cycle. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided a highly valuable dataset, which allows the study of TWS over larger river basins worldwide. However, the lifetime of GRACE is too short to demonstrate long-term variability in TWS. In the Beishan area of northwestern China, which is selected as the most prospective site for high-level radioactive waste (HLRW) disposal, the assessment of long-term TWS changes is crucial to understand disposal safety. Monthly and annual TWS changes during the past 35 years are reconstructed using GRACE data, other remote sensing products, and the water balance method. Hydrological flux outputs from multisource remote sensing products are analyzed and compared to select appropriate data sources. The results show that a decreasing trend is found for GRACE-filtered and Center for Space Research (CSR) mascon solutions from 2003 to 2015, with slopes of −2.30 ± 0.52 and −1.52 ± 0.24 mm/year, respectively. TWS variations independently computed from the water balance method also show a similar decreasing trend with the GRACE observations, with a slope of −0.94 mm/year over the same period. Overall, the TWS anomalies in the Beishan area change seasonally within 10 mm and have been decreasing since 1980, keeping a desirable dry condition as a HLRW disposal site

    A GIS Partial Discharge Pattern Recognition Method Based on Improved CBAM-ResNet

    No full text
    Different types of partial discharge (PD) cause different damages to gas-insulated substation (GIS), so it is very important to correctly identify the type of PD for evaluating the GIS insulation condition. The traditional PD pattern recognition algorithm has the limitations of low recognition accuracy and slow recognition speed in engineering applications. To effectively diagnose the GIS PD type and safeguard the safe and reliable operation of the distribution network, a GIS PD method based on improved CBAM-ResNet was proposed in this paper. And the improved CBAM-ResNet takes advantage of the residual neural network and attention mechanism. In particular, the channel attention module and the spatial attention module are connected in parallel in the improved CBAM. The experimental results showed that the GIS PD pattern recognition method proposed herein has a recognition rate of 93.58%, 95.00%, 93.55%, and 93.88% against the four PD types. Compared with the traditional PD pattern recognition algorithm, the algorithm has the advantages of a lightweight model and more accurate recognition results, which carry better engineering application values

    Evaluation of Terrestrial Water Storage Changes over China Based on GRACE Solutions and Water Balance Method

    No full text
    Accurate estimation of terrestrial water storage anomalies (TWSA) is crucial for the sustainable management of water resources and human living. In this study, long-term TWSA estimates are reconstructed by integration of multiple meteorological products and the water balance (WB) method at 0.5° × 0.5° resolution, generating a total of 12 combinations of different meteorological data. This scheme is applied to 10 river basins (RBs) within China and validated against GRACE observations and GLDAS simulations from 2003 to 2020. Results indicate that similar seasonal characteristics can be observed between different precipitation and evapotranspiration products with the average correlation coefficient and Nash–Sutcliffe efficiency coefficient metrics larger than 0.96 and 0.90, respectively. Three GRACE solutions indicate similar seasonal variations and long-term trends of TWSA over 10 RBs, with the correlation above 0.90. Similar performance can also be observed concerning the root mean square error and mean absolute error metrics. Nevertheless, WB-based TWSA estimates represent larger discrepancies compared to GRACE observations and GLDAS simulations. Specifically, the variation amplitude and long-term trend of WB-based results are much larger than that of the GRACE observations, which is mainly caused by the inaccuracy of remote sensing products and the neglect of anthropogenic activities. Comparable TWSA estimates independently computed from the WB method can only be achieved in 4 out of 10 RBs. This study can provide insightful suggestions for an enhanced understanding of TWSA estimates and improving the performance of the water balance method
    corecore