211 research outputs found

    SD-GAN: Semantic Decomposition for Face Image Synthesis with Discrete Attribute

    Full text link
    Manipulating latent code in generative adversarial networks (GANs) for facial image synthesis mainly focuses on continuous attribute synthesis (e.g., age, pose and emotion), while discrete attribute synthesis (like face mask and eyeglasses) receives less attention. Directly applying existing works to facial discrete attributes may cause inaccurate results. In this work, we propose an innovative framework to tackle challenging facial discrete attribute synthesis via semantic decomposing, dubbed SD-GAN. To be concrete, we explicitly decompose the discrete attribute representation into two components, i.e. the semantic prior basis and offset latent representation. The semantic prior basis shows an initializing direction for manipulating face representation in the latent space. The offset latent presentation obtained by 3D-aware semantic fusion network is proposed to adjust prior basis. In addition, the fusion network integrates 3D embedding for better identity preservation and discrete attribute synthesis. The combination of prior basis and offset latent representation enable our method to synthesize photo-realistic face images with discrete attributes. Notably, we construct a large and valuable dataset MEGN (Face Mask and Eyeglasses images crawled from Google and Naver) for completing the lack of discrete attributes in the existing dataset. Extensive qualitative and quantitative experiments demonstrate the state-of-the-art performance of our method. Our code is available at: https://github.com/MontaEllis/SD-GAN.Comment: 16 pages, 12 figures, Accepted by ACM MM202

    Folic acid therapy reduces the first stroke risk associated with hypercholesterolemia among hypertensive patients

    Get PDF
    Background and Purpose - We sought to determine whether folic acid supplementation can independently reduce the risk of first stroke associated with elevated total cholesterol levels in a subanalysis using data from the CSPPT (China Stroke Primary Prevention Trial), a double-blind, randomized controlled trial. Methods - A total of 20 702 hypertensive adults without a history of major cardiovascular disease were randomly assigned to a double-blind daily treatment of an enalapril 10-mg and a folic acid 0.8-mg tablet or an enalapril 10-mg tablet alone. The primary outcome was first stroke. Results - The median treatment duration was 4.5 years. For participants not receiving folic acid treatment (enalapril-only group), high total cholesterol (≥ 200 mg/dL) was an independent predictor of first stroke when compared with low total cholesterol (\u3c200 mg/dL; 4.0% versus 2.6%; hazard ratio, 1.52; 95% confidence interval, 1.18-1.97; P=0.001). Folic acid supplementation significantly reduced the risk of first s roke among participants with high total cholesterol (4.0% in the enalapril-only group versus 2.7% in the enalapril-folic acid group; hazard ratio, 0.69; 95% confidence interval, 0.56-0.84 P\u3c0.001; number needed to treat, 78; 95% confidence interval, 52-158), independent of baseline folate levels and other important covariates. By contrast, among participants with low total cholesterol, the risk of stroke was 2.6% in the enalapril-only group versus 2.5% in the enalapril-folic acid group (hazard ratio, 1.00; 95% confidence interval, 0.75-1.30; P=0.982). The effect was greater among participants with elevated total cholesterol (P for interaction=0.024). Conclusions - Elevated total cholesterol levels may modify the benefits of folic acid therapy on first stroke. Folic acid supplementation reduced the risk of first stroke associated with elevated total cholesterol by 31% among hypertensive adults without a history of major cardiovascular diseases

    Accuracy of detecting residual disease after neoadjuvant chemoradiotherapy for esophageal squamous cell carcinoma (preSINO trial): A prospective multicenter diagnostic cohort study

    Get PDF
    Background: After neoadjuvant chemoradiotherapy (nCRT) for esophageal cancer, high pathologically complete response (pCR) rates are being achieved especially in patients with squamous cell carcinoma (SCC). An active surveillance strategy has been proposed for SCC patients with clinically complete response (cCR) after nCRT. To justify omitting surgical resection, patients with residual disease should be accurately identified. The aim of this study is to assess the accuracy of response evaluations after nCRT based on the preSANO trial, including positron emission tomography with computed tomography (PET-CT), endoscopy with bite-on-bite biopsies and endoscopic ultrasonography (EUS) with fine-needle aspiration (FNA) in patients with potentially curable esophageal SCC. Methods: Operable esophageal SCC patients who are planned to undergo nCRT according to the CROSS regimen and are planned to undergo surgery will be recruited from four Asian centers. Four to 6 weeks after completion of nCRT, patients will undergo a first clinical response evaluation (CRE-1) consisting of endoscopy with bite-on-bite biopsies. In patients without histological evidence of residual tumor (i.e. without positive biopsies), surgery will be postponed another 6 weeks. A second clinical response evaluation (CRE-2) will be performed 10-12 weeks after completion of nCRT, consisting of PET-CT, endoscopy with bite-on-bite biopsies and EUS with FNA. Immediately after CRE-2 all patients without evidence of distant metastases will undergo esophagectomy. Results of CRE-1 and CRE-2 as well as results of the three single diagnostic modalities will be correlated to pathological response in the resection specimen (gold standard) for calculation of sensitivity, specificity, negative predictive value and positive predictive value. Discussion: If the current study shows that major locoregional residual disease (> 10% residual carcinoma or any residual nodal disease) can be accurately (i.e. with sensitivity of 80.5%) detected in patients with esophageal SCC, a prospective trial will be conducted comparing active surveillance with standard esophagectomy in patients with a clinically complete response after nCRT (SINO trial). Trial registration: The preSINO trial has been registered at ClinicalTrials.gov as NCT03937362 (May 3, 2019)

    A Novel Approach to Molecular Recognition Surface of Magnetic Nanoparticles Based on Host–Guest Effect

    Get PDF
    A novel route has been developed to prepared β-cyclodextrin (β-CD) functionalized magnetic nanoparticles (MNPs). The MNPs were first modified with monotosyl-poly(ethylene glycol) (PEG) silane and then tosyl units were displaced by amino-β-CD through the nucleophilic substitution reaction. The monotosyl-PEG silane was synthesized by modifying a PEG diol to form the corresponding monotosyl-PEG, followed by a reaction with 3-isocyanatopropyltriethoxysilane (IPTS). The success of the synthesis of the monotosyl-PEG silane was confirmed with1H NMR and Fourier transform infrared (FTIR) spectroscopy. The analysis of FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the immobilization of β-CD onto MNPs. Transmission electron microscopy (TEM) indicated that the β-CD functionalized MNPs were mostly present as individual nonclustered units in water. The number of β-CD molecules immobilized on each MNP was about 240 according to the thermogravimetric analysis (TGA) results. The as-prepared β-CD functionalized MNPs were used to detect dopamine with the assistance of a magnet

    Editorial for the Special Issue “Sea Surface Salinity Remote Sensing”

    No full text
    This Special Issue gathers papers reporting research on various aspects of remote sensing of sea surface salinity (SSS) and the use of satellites SSS in oceanography. It includes contributions presenting improvements in empirical or theoretical radiative transfer models; mitigation techniques of external interference such as radio frequency interferences (RFI) and land contamination; comparisons and validation of remote sensing products with in situ observations; retrieval techniques for improved coastal SSS monitoring, high latitude SSS monitoring and assessment of ocean interactions with the cryosphere; and data fusion techniques combining SSS with sea surface temperature (SST). New instrument technology for the future of SSS remote sensing is also presented

    SMOS SSS uncertainties associated with errors on auxiliary parameters

    Get PDF
    European Geosciences Union General Assembly 2014 (EGU2014), 27 april - 2 may 2014, Vienna, Austria.-- 1 pageThe European Soil Moisture and Ocean Salinity (SMOS) mission, aimed at observing sea surface salinity (SSS) from space, has been launched in November 2009. The L–band frequency (1413 MHz) has been chosen as a tradeoff between a sufficient sensitivity of radiometric measurements to changes in salinity, a high sensitivity to soil moisture and spatial resolution constraints. It is also a band protected against human-made emissions. But, even at this frequency, the sensitivity of brightness temperature (TB) to SSS remains low requiring accurate correction for other sources of error. Two significant sources of error for retrieved SSS are the uncertainties on the correction for surface roughness and sea surface temperature (SST). One main geophysical source of error in the retrieval of SSS from L-band TB comes from the need for correcting the effect of the surface roughness and foam. In the SMOS processing, the wind speed (WS) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) is used to initialize the retrieval process of WS and Sea Surface Salinity (SSS). This process compensates for the lack of onboard instrument providing a measure of ocean surface WS independent of the L-band radiometer measurements. Using multi-angular polarimetric SMOS TBs, it is possible to adjust the WS from the initial value in the center of the swath (within 300km) by taking advantage of the different sensitivities of L-band H-pol and V-pol TBs to WS and SSS at various incidence angles. As a consequence, the inconsistencies between the MIRAS sensed roughness and the roughness simulated with the ECMWF WS are reduced by the retrieval scheme but they still lead to residual biases in the SMOS SSS. We have developed an alternative two-step method for retrieving WS from SMOS TB, with larger error on prior ECMWF wind speed in a first step. We show that although it improves SSS in some areas characterized by large currents, it is more sensitive to SMOS TB errors in the vicinity of coasts. The SST used in the SMOS SSS retrievals is from ECMWF Meteorological Archival and Retrieval System (MARS) archive which uses Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) SST. There are noticeable differences between the OSTIA SST and Reynolds SST product derived from satellite and in situ SST. We estimate the SMOS SSS uncertainties due to uncertainties in SST and WS, especially in the tropical Pacific Ocean where there are significant and sometimes coupled variations of SST and WS due to strong seasonal upwelling, zonal surface currents and the development of tropical instability wavesPeer Reviewe

    Sea Surface Salinity Remote Sensing

    Get PDF
    This Special Issue gathers papers reporting research on various aspects of remote sensing of Sea Surface Salinity (SSS) and the use of satellite SSS in oceanography. It includes contributions presenting improvements in empirical or theoretical radiative transfer models; mitigation techniques of external interference such as RFI and land contamination; comparisons and validation of remote sensing products with in situ observations; retrieval techniques for improved coastal SSS monitoring, high latitude SSS and the assessment of ocean interactions with the cryosphere; and data fusion techniques combining SSS with sea surface temperature (SST). New instrument technology for the future of SSS remote sensing is also presented
    • …
    corecore