25 research outputs found

    Gadd45a promotes DNA demethylation through TDG

    Get PDF
    Growth arrest and DNA-damage-inducible protein 45 (Gadd45) family members have been implicated in DNA demethylation in vertebrates. However, it remained unclear how they contribute to the demethylation process. Here, we demonstrate that Gadd45a promotes active DNA demethylation through thymine DNA glycosylase (TDG) which has recently been shown to excise 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) generated in Ten-eleven-translocation (Tet)—initiated oxidative demethylation. The connection of Gadd45a with oxidative demethylation is evidenced by the enhanced activation of a methylated reporter gene in HEK293T cells expressing Gadd45a in combination with catalytically active TDG and Tet. Gadd45a interacts with TDG physically and increases the removal of 5fC and 5caC from genomic and transfected plasmid DNA by TDG. Knockout of both Gadd45a and Gadd45b from mouse ES cells leads to hypermethylation of specific genomic loci most of which are also targets of TDG and show 5fC enrichment in TDG-deficient cells. These observations indicate that the demethylation effect of Gadd45a is mediated by TDG activity. This finding thus unites Gadd45a with the recently defined Tet-initiated demethylation pathwa

    Spatial Segmentation of Mass Spectrometry Imaging Data by Combining Multivariate Clustering and Univariate Thresholding

    No full text
    Spatial segmentation partitions mass spectrometry imaging (MSI) data into distinct regions providing a concise visualization of the vast amount of data and identifying regions of interest (ROIs) for downstream statistical analysis. Unsupervised approaches are particularly attractive as they may be used to discover the underlying subpopulations present in the high-dimensional MSI data without prior knowledge of the properties of the sample. Herein, we introduce an unsupervised spatial segmentation approach, which combines multivariate clustering and univariate thresholding to generate comprehensive spatial segmentation maps of the MSI data. This approach combines matrix factorization and manifold learning to enable high-quality image segmentation without an extensive hyperparameter search. In parallel, some ion images inadequately represented in the multivariate analysis are treated using univariate thresholding to generate complementary spatial segments. The final spatial segmentation map is assembled from segment candidates generated using both techniques. We demonstrate the performance and robustness of this approach for two MSI data sets of mouse uterine and kidney tissue sections acquired with different spatial resolutions. The resulting segmentation maps are easy to interpret and project onto the known anatomical regions of the tissue.</p

    Quantitative Extraction and Mass Spectrometry Analysis at a Single-Cell Level

    No full text
    Quantitative live cell mass spectrometry analysis at a subcellular level requires the precisely controlled extraction of subpicoliter volumes of material from the cell, sensitive analysis of the extracted analytes, and their accurate quantification without prior separation. In this study, we demonstrate that localized electroosmotic extraction provides a direct path to addressing this challenge. Specifically, we demonstrate quantitative mass spectrometry analysis of biomolecules in picoliter volumes extracted from live cells. Electroosmotic extraction was performed using two electrodes and a finely pulled nanopipette with tip diameter of <1 μm containing a hydrophobic electrolyte compatible with mass spectrometry analysis. The electroosmotic drag was used to drive analytes out of the cell into the nanopipette. Analyte molecules extracted both from solutions and cell samples were analyzed using nanoelectrospray ionization (nanoESI) directly from the nanopipette into a mass spectrometer. More than 50 metabolites including sugars and flavonoids were detected in positive mode in 2−5 pL volumes of the cytoplasmic material extracted from Allium cepa. Quantification of the extracted glucose was performed using sequential extraction of a known volume of the aqueous solution containing glucose-<i>d</i><sub>2</sub> standard of known concentration. We found that the ratio of the signal of glucose to glucose-<i>d</i><sub>2</sub> increased linearly with glucose concentration. This observation indicates that the approach developed in this study enables quantitative analysis of small volumes of metabolites extracted from cells. Furthermore, we observed efficient separation of hydrophilic and hydrophobic analytes through partitioning into the aqueous and hydrophobic electrolyte phase, respectively, which provides additional important information on the molecular properties of extracted metabolites

    Quantitative Extraction and Mass Spectrometry Analysis at a Single-Cell Level

    No full text
    Quantitative live cell mass spectrometry analysis at a subcellular level requires the precisely controlled extraction of subpicoliter volumes of material from the cell, sensitive analysis of the extracted analytes, and their accurate quantification without prior separation. In this study, we demonstrate that localized electroosmotic extraction provides a direct path to addressing this challenge. Specifically, we demonstrate quantitative mass spectrometry analysis of biomolecules in picoliter volumes extracted from live cells. Electroosmotic extraction was performed using two electrodes and a finely pulled nanopipette with tip diameter of <1 μm containing a hydrophobic electrolyte compatible with mass spectrometry analysis. The electroosmotic drag was used to drive analytes out of the cell into the nanopipette. Analyte molecules extracted both from solutions and cell samples were analyzed using nanoelectrospray ionization (nanoESI) directly from the nanopipette into a mass spectrometer. More than 50 metabolites including sugars and flavonoids were detected in positive mode in 2−5 pL volumes of the cytoplasmic material extracted from Allium cepa. Quantification of the extracted glucose was performed using sequential extraction of a known volume of the aqueous solution containing glucose-<i>d</i><sub>2</sub> standard of known concentration. We found that the ratio of the signal of glucose to glucose-<i>d</i><sub>2</sub> increased linearly with glucose concentration. This observation indicates that the approach developed in this study enables quantitative analysis of small volumes of metabolites extracted from cells. Furthermore, we observed efficient separation of hydrophilic and hydrophobic analytes through partitioning into the aqueous and hydrophobic electrolyte phase, respectively, which provides additional important information on the molecular properties of extracted metabolites

    Quantitative Extraction and Mass Spectrometry Analysis at a Single-Cell Level

    No full text
    Quantitative live cell mass spectrometry analysis at a subcellular level requires the precisely controlled extraction of subpicoliter volumes of material from the cell, sensitive analysis of the extracted analytes, and their accurate quantification without prior separation. In this study, we demonstrate that localized electroosmotic extraction provides a direct path to addressing this challenge. Specifically, we demonstrate quantitative mass spectrometry analysis of biomolecules in picoliter volumes extracted from live cells. Electroosmotic extraction was performed using two electrodes and a finely pulled nanopipette with tip diameter of <1 μm containing a hydrophobic electrolyte compatible with mass spectrometry analysis. The electroosmotic drag was used to drive analytes out of the cell into the nanopipette. Analyte molecules extracted both from solutions and cell samples were analyzed using nanoelectrospray ionization (nanoESI) directly from the nanopipette into a mass spectrometer. More than 50 metabolites including sugars and flavonoids were detected in positive mode in 2−5 pL volumes of the cytoplasmic material extracted from Allium cepa. Quantification of the extracted glucose was performed using sequential extraction of a known volume of the aqueous solution containing glucose-<i>d</i><sub>2</sub> standard of known concentration. We found that the ratio of the signal of glucose to glucose-<i>d</i><sub>2</sub> increased linearly with glucose concentration. This observation indicates that the approach developed in this study enables quantitative analysis of small volumes of metabolites extracted from cells. Furthermore, we observed efficient separation of hydrophilic and hydrophobic analytes through partitioning into the aqueous and hydrophobic electrolyte phase, respectively, which provides additional important information on the molecular properties of extracted metabolites

    Nickel(II) Inhibits Tet-Mediated 5‑Methylcytosine Oxidation by High Affinity Displacement of the Cofactor Iron(II)

    No full text
    Ten-eleven translocation (Tet) family proteins are Fe­(II)- and 2-oxoglutarate-dependent dioxygenases that regulate the dynamics of DNA methylation by catalyzing the oxidation of DNA 5-methylcytosine (5mC). To exert physiologically important functions, redox-active iron chelated in the catalytic center of Tet proteins directly involves the oxidation of the multiple substrates. To understand the function and interaction network of Tet dioxygenases, it is interesting to obtain high affinity and a specific inhibitor. Surprisingly, here we found that natural Ni­(II) ion can bind to the Fe­(II)-chelating motif (HXD) with an affinity of 7.5-fold as high as Fe­(II). Consistently, we further found that Ni­(II) ion can displace the cofactor Fe­(II) of Tet dioxygenases and inhibit Tet-mediated 5mC oxidation activity with an estimated IC<sub>50</sub> of 1.2 μM. Essentially, Ni­(II) can be used as a high affinity and selective inhibitor to explore the function and dynamics of Tet proteins

    Capillary Monolithic Bioreactor of Immobilized Snake Venom Phosphodiesterase for Mass Spectrometry Based Oligodeoxynucleotide Sequencing

    No full text
    A capillary monolithic bioreactor of snake venom phosphodiesterase (SVP) was constructed to generate different single-nucleotide mass ladders of oligodeoxynucleotides for mass spectrometry (MS)-based sequencing by immobilization. The immobilization of SVP in the porous silica monolith significantly enhances its stability for prolonged and repeated applications. The constructed capillary bioreactor has the advantages of handling (sub)­microliter DNA samples and having good permeability. Benefiting from its good permeability, DNA solutions can be directly injected into the sequential digestion bioreactor simply by hand pushing or a low-pressure microinjection pump. Moreover, the immobilization of SVP facilitates the elimination or repression of the metal adducts of oligodeoxynucleotides, improving the analytical performance of MS sequencing. By the application of capillary bioreactor of immobilized SVP, the sequence-specific modification of single-stranded oligodeoxynucleotide induced by a ubiquitous pollutant acrolein (Acr) was identified, demonstrating its promising applications in identification of sequence-specific damage, which may further our understanding of DNA damage caused mutagenesis

    Nanospray Desorption Electrospray Ionization (nano-DESI) Mass Spectrometry Imaging of Drift Time-Separated Ions

    No full text
    Simultaneous spatial localization and structural characterization of molecules in complex biological samples currently represents an analytical challenge for mass spectrometry imaging (MSI) techniques. In this study, we describe a novel experimental platform, which substantially expands the capabilities and enhances the depth of chemical information obtained in high spatial resolution MSI experiments performed using nanospray desorption electrospray ionization (nano-DESI). Specifically, we designed and constructed a portable nano-DESI MSI platform and coupled it with a drift tube ion mobility spectrometer-mass spectrometer (IM-MS). Separation of biomolecules observed in MSI experiments based on their drift times provides unique molecular descriptors necessary for their identification by comparison with databases. Furthermore, it enables isomer-specific imaging, which is particularly important for unraveling the complexity of biological systems. Imaging of day 4 pregnant mouse uterine sections using the newly developed nano-DESI-IM-MSI system demonstrates rapid isobaric and isomeric separation and reduced chemical noise in MSI experiments. A direct comparison of the performance of the new nano-DESI-MSI platform operated in the MS mode with the more established nano-DESI-Orbitrap platform indicates a comparable performance of these two systems. A spatial resolution of better than ~16 µm and similar molecular coverage was obtained using both platforms. The structural information provided by the ion mobility separation expands the molecular specificity of high-resolution MSI necessary for the detailed understanding of biological systems

    An Integrated Microfluidic Probe for Mass Spectrometry Imaging of Biological Samples

    No full text
    Ambient ionization based on liquid extraction is widely used in mass spectrometryimaging (MSI) of molecules in biological samples. The development of nanospray desorption electrospray ionization (nano-DESI) has enabled the robust imaging of tissue sections with high spatial resolution. However, the fabrication of the nano-DESI probe is challenging, which limits its dissemination to the broader scientific community. Herein, we describe the design and performance of an integrated microfluidic probe (iMFP) for nano-DESI MSI. The glass iMFP fabricated using photolithography, wet etching, and polishing shows comparable performance to the capillary-based nano-DESI MSI in terms of stability and sensitivity; the spatial resolution of better than 25 μm was obtained in these first proof-of-principle experiments. The iMFP is easy to operate and align in front of a mass spectrometer, which will facilitate broader use of liquid extraction-based MSI in biological research, drug discovery, and clinical studies
    corecore