31,009 research outputs found
Vibration-rotation bands of AsH sub 3 in the 2 mu region
Vibration-rotation bands of arsine in 2-mu region
Energy-efficiency improvements for optical access
This article discusses novel approaches to improve energy efficiency of different optical access technologies, including time division multiplexing passive optical network (TDM-PON), time and wavelength division multiplexing PON (TWDM-PON), point-to-point (PTP) access network, wavelength division multiplexing PON (WDM-PON), and orthogonal frequency division multiple access PON (OFDMA-PON). These approaches include cyclic sleep mode, energy-efficient bit interleaving protocol, power reduction at component level, or frequency band selection. Depending on the target optical access technology, one or a combination of different approaches can be applied
Investigation of a Few Simple Molecular Gases as a Possible Molecular Laser Material
Energy levels of simple molecular gases for possible molecular laser materia
Spectral Statistics of Erd{\H o}s-R\'enyi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues
We consider the ensemble of adjacency matrices of Erd{\H o}s-R\'enyi random
graphs, i.e.\ graphs on vertices where every edge is chosen independently
and with probability . We rescale the matrix so that its bulk
eigenvalues are of order one. Under the assumption , we prove
the universality of eigenvalue distributions both in the bulk and at the edge
of the spectrum. More precisely, we prove (1) that the eigenvalue spacing of
the Erd{\H o}s-R\'enyi graph in the bulk of the spectrum has the same
distribution as that of the Gaussian orthogonal ensemble; and (2) that the
second largest eigenvalue of the Erd{\H o}s-R\'enyi graph has the same
distribution as the largest eigenvalue of the Gaussian orthogonal ensemble. As
an application of our method, we prove the bulk universality of generalized
Wigner matrices under the assumption that the matrix entries have at least moments
Interactions and Scaling in a Disordered Two-Dimensional Metal
We show that a non-Fermi liquid state of interacting electrons in two
dimensions is stable in the presence of disorder and is a perfect conductor,
provided the interactions are sufficiently strong. Otherwise, the disorder
leads to localization as in the case of non-interacting electrons. This
conclusion is established by examining the replica field theory in the weak
disorder limit, but in the presence of arbitrary electron-electron interaction.
Thus, a disordered two-dimensional metal is a perfect metal, but not a Fermi
liquid.Comment: 4 pages, RevTe
Dynamics of Overhauser Field under nuclear spin diffusion in a quantum dot
The coherence of electron spin can be significantly enhanced by locking the
Overhauser field from nuclear spins using the nuclear spin preparation. We
propose a theoretical model to calculate the long time dynamics of the
Overhauser field under intrinsic nuclear spin diffusion in a quantum dot. We
obtain a simplified diffusion equation that can be numerically solved and show
quantitatively how the Knight shift and the electron-mediated nuclear spin
flip-flop affect the nuclear spin diffusion. The results explain several recent
experimental observations, where the decay time of Overhauser field is measured
under different configurations, including variation of the external magnetic
field, the electron spin configuration in a double dot, and the initial nuclear
spin polarization rate.Comment: 6 pages, 5 figure
Thermal and electrical transport in the spin density wave antiferromagnet CaFeAs
We present here measurements of the thermopower, thermal conductivity, and
electrical resistivity of the newly reported compound CaFe4As3. Evidence is
presented from specific heat and electrical resistivity measurements that a
substantial fraction of the Fermi surface survives the onset of spin density
wave (SDW) order at the Neel temperature TN=88 K, and its subsequent
commensurate lockin transition at T2=26.4 K. The specific heat below T2
consists of a normal metallic component from the ungapped parts of the Fermi
surface, and a Bardeen-Cooper- Schrieffer (BCS) component that represents the
SDW gapping of the Fermi surface. A large Kadowaki-Woods ratio is found at low
temperatures, showing that the ground state of CaFe4As3 is a strongly
interacting Fermi liquid. The thermal conductivity of CaFe4As3 is an order of
magnitude smaller than those of conventional metals at all temperatures, due to
a strong phonon scattering. The thermoelectric power displays a sign change
from positive to negative indicating that a partial gap forms at the Fermi
level with the onset of commensurate spin density wave order at T2=26.4 K. The
small value of the thermopower and the enhancements of the resistivity due to
gap formation and strong quasiparticle interactions offset the low value of the
thermal conductivity, yielding only a modest value for the thermoelectric
figure of merit Z < 5x10^-6 1/K in CaFe4As3. The results of ab initio
electronic structure calculations are reported, confirming that the sign change
in the thermopower at T2 is reflected by a sign change in the slope of the
density of states at the Fermi level. Values for the quasiparticle
renormalization are derived from measurements of the specific heat and
thermopower, indicating that as T->0, CaFe4As3 is among the most strongly
correlated of the known Fe-based pnictide and chalcogenide systems.Comment: 8 pages with 5 figure
An analysis of the X-ray emission from the supernova remnant 3C397
The ASCA SIS and the ROSAT PSPC spectral data of the SNR 3C397 are analysed
with a two-component non-equilibrium ionization model. Besides, the ASCA SIS0
and SIS1 spectra are also fitted simultaneously in an equilibrium case. The
resulting values of the hydrogen column density yield a distance of \sim8\kpc
to 3C397. It is found that the hard X-ray emission, containing S and Fe
K lines, arises primarily from the hot component, while most of the
soft emission, composed mainly of Mg, Si, Fe L lines, and continuum, is
produced by the cool component. The emission measures suggest that the remnant
evolves in a cloudy medium and imply that the supernova progenitor might not be
a massive early-type star. The cool component is approaching ionization
equilibrium. The ages estimated from the ionization parameters and dynamics are
all much greater than the previous determination. We restore the X-ray maps
using the ASCA SIS data and compare them with the ROSAT HRI and the NRAO VLA
Sky Survey (NVSS) 20 cm maps. The morphology with two bright concentrations
suggests a bipolar remnant encountering a denser medium in the west.Comment: 20 pages, aasms4.sty, 3 figures To appear in ApJ (1999
Fluctuating-friction molecular motors
We show that the correlated stochastic fluctuation of the friction
coefficient can give rise to long-range directional motion of a particle
undergoing Brownian random walk in a constant periodic energy potential
landscape. The occurrence of this motion requires the presence of two
additional independent bodies interacting with the particle via friction and
via the energy potential, respectively, which can move relative to each other.
Such three-body system generalizes the classical Brownian ratchet mechanism,
which requires only two interacting bodies. In particular, we describe a simple
two-level model of fluctuating-friction molecular motor that can be solved
analytically. In our previous work [M.K., L.M and D.P. 2000 J. Nonlinear Opt.
Phys. Mater. vol. 9, 157] this model has been first applied to understanding
the fundamental mechanism of the photoinduced reorientation of dye-doped liquid
crystals. Applications of the same idea to other fields such as molecular
biology and nanotechnology can however be envisioned. As an example, in this
paper we work out a model of the actomyosin system based on the
fluctuating-friction mechanism.Comment: to be published in J. Physics Condensed Matter
(http://www.iop.org/Journals/JPhysCM
- …